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Abstract

In this study we derive a three-dimensional forest fire combustion model. The forest is modelled as a diphasic

medium composed of a gaseous and a porous vegetal pyrolysis phase. A formal averaging method and a thermody-

namic closure by use of extended irreversible thermodynamics are used to give a complete set of coupled non-linear

equations for this diphasic medium. This set of equations deals with the processes of drying, the pyrolysis of the vegetal

phase, and the combustion of the pyrolysis gases in this gaseous phase. A three-dimensional reaction diffusion equation

for the forest fire propagation with a non-local radiation term is then derived under some simplified hypothe-

ses. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Every year, about 750 thousand hectares of forest are

burnt in northern America versus only 40 thousand

hectares of forest in Europe which is comparatively low.

This destruction represents a direct cost of 2 billion

dollars a year in the USA. Simulation of forest fire

propagation can serve several purposes. The prevision of

the fire front can help firemen in optimising the distri-

bution of fighting means, which supposes real time

simulation. Another application of simulation relates to

fire prevention. Using terrain data, computer models of

propagation could provide information on dangerous

areas. The possibility for such models to take into ac-

count some aspects of means of fire fighting, such as

chemical retardants, should be highly desirable.

However currently the fire spreading simulators are

far from being scientifically satisfactory. The reason is

that forest fire is a complex large scale natural

phenomenon that takes into account both the chemico-

physical aspect of the combustion of the forest stratum

that produces heat and the local meteorological forecast.

These two aspects are coupled together because wind

activates fire and fire is a heat source that induces con-

vection above the forest. The topography of the land-

scape has a great importance upon forest fire prevision

as well. It is worthwhile noticing that a great part of the

difficulty for modelling forest fires consists in describing

the physical mechanisms taking place inside the vegetal

stratum.

Rothermel’s model [1] gives the fire heat source and

the fire straight front velocity as analytical empirical

laws for a uniform forest. The computation is very fast,

but the empirical laws are usually obtained from lab-

oratory experiments, not from real fire experiments, so

the transposition is sometimes difficult. Complete forest

fire physical models taking better account of physical

mechanisms taking place inside the vegetal stratum have

been proposed by Grishin [2] and Larini et al. [3]. These

models are based upon global balance laws of mass

energy and momentum. They consider the forest as a

porous medium, composed of a gaseous phase and a

vegetal phase, i.e. the wood, the stacks, the leaves, etc.,

in which transfer of mass, energy and momentum takes

place. With the two physical models a great effort has

been exerted for modelling combustion in the vegeta-

tion. The set of equations given in Grishin’s model is

postulated on both basic half scale experimental data

and physical balance laws governing transfer in porous

media. This model is closed and is adequate for the
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prediction of general forest fire propagation. The closure

is obtained by physical intuition and experimental ob-

servations. Nevertheless, it is very difficult to derive

physical laws from laboratory experiments such that the

similarity conditions are satisfied. On the other hand, the

model of Larini et al. is derived by use of the formal

averaging method and the closure is obtained after some

restrictive assumptions, for example that the gaseous

heat conduction is so that negligible, and invoking some

empirical laws. Moreover, the derived set of equations is

not closed because coupled small scale flow resolution is

still needed.

It is therefore of interest to completely derive again a

closed set of equations for the combustion inside the

forest, as that of Grishin, by use of a general closing

tool, i.e. by the derivation of a combustion model of

Nomenclature

Macroscopic quantities

d occupation density (dimensionless)

E internal energy (J kg�1)

Fjk momentum transfer from phase j toward

phase k (kg m�2 s�2)

H internal enthalpy (J kg�1)

I radiative source term (W m�4 sr�1)

J flux of mass diffusion (kg m�2 s�1)

Kjk internal mass transfer from phase j toward

phase k (kg m�3 s�1)

L spectral intensity (W m�3 sr�1)

P pressure (Pa)

Q heat flux (W m�2)

Qi puissance produced by chemical reaction

number i (W kg�1)

Rc chemical reaction source term (W m�3)

Sa saturation of solid or fluid elements

(dimensionless)

T temperature (K)

V intrinsic velocity (m s�1)

W molar mass (kg kmol�1)

X jk puissance transfer from phase j toward phase

k (W m�3)

Y mass fraction (dimensionless)

Greek symbols

Ep porosity of the wood as a porous medium

(dimensionless)

j permeability tensor (m2)

q intrinsic mass density (kg m�3)

S total stress tensor (N m�2)

T viscous stress tensor (N m�2)

U porosity of the vegetal combustible phase

(dimensionless)

w rate of mole production (kmol m�3 s�1)
_xxi rate of mass production of the species number

i (kg m�3 s�1)

X space region

Superscripts

– variable above the vegetation layer

� mesoscopic quantities
_ vegetal combustible phase extended functions

Subscripts

c char

F gaseous fuel

f fluid phase in vegetal phase

g gas in porous phase

i ith gas species

j, k generic subscripts for gas in porous

phase

l liquid (water)

O oxygen

p porous phase

(vegetal)

R residues of combustion

r radiation term

s mesoscopic solid phase (union of wood and

char components)

T tar

v vapour

w wood

– variable under the vegetation

layer

Mesoscopic quantities

e internal energy (J kg�1)

h internal enthalpy (J kg�1)

fjk momentum transfer from phase j toward

phase k (kg m�2 s�2)

j flux of mass diffusion

(kg m�2 s�1)

kjk internal mass transfer from phase j toward

phase k (kg m�3 s�1)

k permeability tensor (m2)

p pressure (Pa)

q heat flux (W m�2)

Sa saturation (dimensionless)

v intrinsic velocity (m s�1)

y mass fraction (dimensionless)

ep porosity of the wood as a porous medium

(dimensionless)
~qq intrinsic mass density (kg m�3)

r total stress tensor (N m�2)

YFf viscous stress tensor in the gaseous phase

(N m�2)
_xxi rate of mass production of the species number

i (kg m�3 s�1)
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forest vegetation. We adapt Marle [4] general math-

ematical closing method. This closed set of equations

deals with gaseous heat conduction and considers the

porous character of the vegetal phase, i.e. of the wood,

and pyrolysis gases convection into it so that this model

should better take into account the mechanisms involved

at branch scale, such as drying and pyrolysis, that the

model of Larini does. To our best knowledge, macro-

scopic equations for such a porous medium, the solid

part of which is a porous medium too, are not known so

that we derive such an equivalent medium for the forest

combustion by a general method of scale changing. We

use extended irreversible thermodynamics because of the

probable large size of the averaging volume. Let us recall

that thermodynamics is qualified to be ‘‘extended’’ if

there are differential fluxes in Gibbs relation [5]. Ex-

tended thermodynamics adds relaxation coefficients in

phenomenological closure relations that become differ-

ential. We would like to get such relaxation coefficients

in our macroscopic equations because they are suspected

to be of importance in porous medium heat and mass

transfers [6].

In Section 2 we will analyse the different scales of the

system and the physical mechanisms involved at these

scales. This is the first essential basic stage of modelling.

The mesoscopic description of the vegetation is given

too. In Section 3 we will derive the equations for the

vegetal combustible phase from this mesoscopic set of

equations by homogenisation tool and include discus-

sion on the closure hypotheses. In Section 4 we will give

the equations for above the forest, into the ground and

interface conditions between the forest and above it.

Then in Section 5 we will simplify the model, and obtain

a reaction diffusion equation.

2. Analysis of the scales and mesoscopic description

2.1. Geometry and scales description of the forest fire

If we consider a small intensity developed fire, the

range of fire sizes is several hundred meters to several

kilometres. In this scale, that we call ‘‘gigascopic’’ scale,

the vegetation appears as a thin layer and the fire front is

a one-dimensional line moving along a two-dimensional

surface and the fire interacts with the topography and

meteorology.

The typical size of the forest structure description is

the thickness of the vegetation layer or the height of the

flames. In this scale, that we call ‘‘macroscopic’’ scale

and denote lf , we consider three regions (Fig. 1). The
region above the vegetation, denoted by X and called

‘‘ambient air’’, is composed of a gaseous phase. Tall

flames can develop in this region. The quantities as-

sociated with this region will be overlined. The region

under the vegetation, i.e. ground, is denoted by X. The
quantities associated with this region will be underlined.

The vegetation layer is finally denoted by X.
The forest is stratified due to the different types of

vegetation at different altitudes. For the sake of sim-

plicity we will consider a forest with only one stratum

and the ground will be considered as adiabatic. Hori-

zontal heterogeneity of vegetation repartition may ap-

pear at the macroscopic scale if the vegetation layer is

composed of a ‘‘vegetal combustible phase’’ (bushes)

and a non-combustible one with no bushes (Fig. 2,

macroscopic scale). ‘‘Occupation density’’ d charac-

terises this repartition at gigascopic scale. It is the pro-

portion of area occupied by the vegetation. In this scale

the fire interacts with the local wind into the vegetation

layer. Interface balances between the vegetation stratum

and the gas above must be used.

The vegetal combustible phase (called vegetal phase

in the rest of the paper) must be modelled. It is con-

sidered as a macroscopic porous medium composed of

the vegetation and of a gaseous component. The typical

size of its structure description is the ‘‘mesoscopic’’ scale,

denoted by lv (Fig. 2). This is a diphasic medium com-
posed of a ‘‘gaseous phase’’ or f phase with the index f

(fluid), and of the ‘‘vegetation’’ or p phase with the index

p (porous, we will see later that the vegetation is con-

sidered as a porous medium). The geometry of the p

phase in the meso- to macroscopic elementary cell plays

a prominent part in the energy exchange. Let Vf and Vp
be the volumes of the f phase and of the p phase and

V ¼ Vf þ Vp the volume of the elementary cell. In ad-
dition to the porosity U ¼ Vf=V , the ratio r of the sur-
face to the volume of the pieces of vegetation is of great

Fig. 1. Different forest regions.
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importance. The greater the r, the more the energy
transfer that is increased between the solid and the faster

the fire advances. If we compute the Reynolds number

Re, with the pore size as length scale, we can estimate
that 38 < Re < 1900. These values are obtained for air
at 800 �C, for a velocity of 0:5 m s�1 and a characteristic
length between 10�2 and 5� 10�1 m. Therefore if the
vegetation is very ‘‘compact’’ the flow, at the pore level,

is not turbulent and the main reason for the oscillations

of the velocity is the porous character of the forest me-

dium.

At the lowest level, that is in the microscopic scale,

denoted by lw, the p phase is a multiphasic medium it-
self. It is composed of three phases: the solid phase, the

liquid phase, and a gaseous phase. The main physical

effects involved at this scale are pyrolysis and drying. Di

Blasi [7] has already given a mesoscopic model of such a

vegetation medium so that we will use it and we will

disregard the microscopic description in the following.

At virgin state, the solid component of the vegetation

is made essentially of hemicellulose, cellulose, and lignin,

the liquid component is water and the gaseous com-

ponent is air. For the sake of simplicity we define the

lumped ‘‘wood’’ species as: hemicellulose, cellulose, and

lignin. Under heating, the vegetation dries firstly, and

then the wood pyrolysis starts. This decomposition of

wood modelling, i.e. pyrolysis modelling, was made

tractable by defining the following mesoscopic lumped

species [7]: ‘‘char’’, ‘‘flammable gases’’, and ‘‘tar’’. Char

is a carbon rich non-volatile pyrolysis residues, flam-

mable gases are low molecular weight products that are

gas phase species at room temperature, and tar is a high

molecular weight product that is a vapour at pyrolysis

temperature but condenses near room temperature.

They are secondary reactions which describe the tar

decomposition into flammable gases and char. Thus the

components of the vegetation or porous phase are:

1. the solids: wood indexed by w, char indexed by c;

2. the gases: air, ðH2OÞv, flammable gases F or fuel, in-
dexed by Fp and vp, respectively;

3. the liquid: water ðH2OÞl indexed by lp.
For the sake of simplicity we neglect secondary reactions

involving tar. Moreover, we assume that oxygen does

not oxidise the wood inside the p phase (branches of

vegetation). The chemical reactions which take place in

the mesoscopic scale for the p phase are:

Water vaporisation : ðH2OÞl !
~kklv ðH2OÞv

Pyrolysis :
Wood!

~kkwF
Fuel

Wood!
~kkwC
Char

8<
:

The components of the gaseous phase, or f phase, are

(5 species numbered from 1 to 5): oxygen O2, indexed by

O, nitrogen N2 indexed by N; steam ðH2OÞv indexed by
vf (vapour in the fluid), flammable gases, i.e. fuel F in-

dexed by Ff (fuel in the fluid) and combustion residue R

indexed by Rf (residue in the fluid). There is no tar in the

gaseous phase in our study because we have neglected its

production in the vegetation. In the gaseous phase f

oxidation of the flammable gases take place:

Oxidation reaction : mFFþ mOO2 !
~kk
VRR

Let Vwp , Vcp , Vgp and Vlp be the volumes occupied,
respectively, by the wood, the char, the gas and the

Fig. 2. Link between macroscopic, mesoscopic and microscopic scales.
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liquid phases of the p phase. Then Vsp ¼ Vwp þ Vcp ,
Vfp ¼ Vgp þ Vlp , and Vp ¼ Vsp þ Vfp are the volumes oc-
cupied, respectively, by the solid, the fluid and the total

part of the p phase. The porosity ep of the p phase is
defined by ep ¼ Vfp=Vp. The saturations of solid com-
ponents of the p phase are Sawp ¼ Vwp=Vsp for the wood
and Sacp ¼ Vcp=Vsp for the char component. Likewise the
saturations of the fluid component are Sagp ¼ Vgp=Vfp for
the gas and Salp ¼ Vlp=Vfp for the liquid components.
The different scales, the different phases, the differ-

ent porosities and their relationship are summarised in

Fig. 3.

2.2. Mesoscopic system of equations for the different

phases of the vegetation stratum

The mesoscopic set of equations for the f phase and

the p phase will be described now. The mesoscopic jump

conditions between these two phases will be given too.

This set of equations is needed for the homogenisation

of Section 3.

2.2.1. Inside the gaseous phase or f phase

Equations are the equations for the mixing of perfect

gases, which are [8]:

• the balance of mass for species number i

o

ot
~qqfyif
� �

þr 
 ~qqfyifvf
�

þ jif

�
¼ _~xx~xxif ð1Þ

with
P

i yif ¼ 1, and
P

i jif ¼ 0, i ¼ O2;N2; ðH2OÞv,
fuel F and residue R,

• the balance of momentum

o

ot
~qqfvf
� �

þr 
 ~qqfvf
�

� vf � sf
�
¼ ~qqfg�rpf ; ð2Þ

• the balance of energy

o

ot
~qqf ef

��
þ 1
2
v2f

��
þr ~qqf ef

��
þ 1
2
v2f

�
vf

þ qf � rf 
 vf
�

¼ ~qqfg 
 vf ; ð3Þ

where g is the gravity vector and the usual thermody-

namic state equations.

2.2.2. Inside the vegetation or p phase

Di Blasi [7] has given a model of such a porous me-

dium that we are going to use, taking into account dif-

fusive transport of fluid species, water vaporisation and

gravity. We use intrinsic density description. For ex-

ample wood density ~qqwp is defined by ~qqwp ¼ Mwp=Vwp ,
where Mwp is the mass of wood species inside the volume

Vwp .
For the solid phase, the balances of mass for the

wood and the char are

o

ot
ð1
�

� epÞSawp ~qqwp
�
¼ �kwpFgp � kwpcp ð4Þ

and

o

ot
ð1
�

� epÞSacp ~qqcp
�
¼ �kcpwp ð5Þ

with Sawp þ Sacp ¼ 1. The kij are the internal mass
transfers from species i to species j and kij ¼ �kji. The
union of these two solid phases will be indexed by s in

the following.

For the gaseous constituents the balances of mass of

the flammable gases and the water vapour are

o

ot
epSagp ~qqgpyFgp
� �

þr 
 epSagp ~qqgpyFgpvgp
�

þ jFgp

�
¼ �kFgpwp ð6Þ

and

o

ot
epSagp ~qqgpyvgp
� �

þr 
 epSagp ~qqgpyvgpvgp
�

þ jvgp

�
¼ �kvgplp ð7Þ

with yFgp þ yvgp ¼ 1 and jFgp þ jvgp ¼ 0, and the balance
of mass of the liquid constituent is

o

ot
epSalp ~qqlpylp
� �

þr 
 epSalp ~qqlpylpvlp
� �

¼ �klpvgp ð8Þ

with Sagp þ Salp ¼ 1.
The p phase is a porous medium of small porosity ep,

so that there is no, strictly speaking, equation for the

balance of momentum, in the gaseous and liquid con-

stituents. Velocities are ruled by the Darcy law that we

Fig. 3. Different scales and the associated phases and porosities.
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write here in a balance form which is more adequate for

the average procedure than the classical Darcy law form

r epSagppgp
� �

¼ epSagp ~qqgpg� fgpsp � fgplp ;

r epSalpplp

� �
¼ epSalp ~qqlpg� f lpsp � f lpgp

ð9Þ

with the momentum transfers fgpsp and fgplp , respectively,

from gas phases toward solid (wood and char) and liq-

uid phases, and f lpsp and f lpgp , respectively, from liquid

phases toward solid and gas phases, giving by the con-

stitutive relations

vgp ¼ �
kgp

epSagp

� �2
lgp

fgpsp

�
þ fgplp þ pgprðepSagp Þ

�
;

vlp ¼ �
klp

epSalp
	 
2

llp
f lpsp

�
þ f lpgp þ plpr epSalp

	 
�

and the action reaction relation fgplp þ f lpgp þ klpvgpvgp þ
kvgplpvlp ¼ 0. The two tensors kgp and klp are permeability
tensors and vgp and vlp are the intrinsic mesoscopic

velocities. Seepage velocities are epSagpvgp and epSalpvlp .
One can define the mass densities ~qqsp , ~qqfp and ~qqp of

the solid and fluid components and of the p phase by

~qqsp ¼ swp ~qqwp þ scp ~qqcp ;

~qqfp ¼ sgp ~qqgp þ slp ~qqlp ;

and

~qqp ¼ ep~qqfp þ ð1� epÞ~qqsp :

The barycentric velocity vfp of the p phase fluid com-

ponent and the pressure pfp are defined by

~qqfpvfp ¼ sgp ~qqgpvgp þ slp ~qqlpvlp

and

pfp ¼ sgppgp þ slpplp :

We have assumed in the preceding relations that the

solid constituent is at rest. We can define the dissipating

force ffpsp by ffpsp ¼ fgpsp þ f lpsp so that Eq. (9) leads to

r eppfp
	 


¼ ep~qqfpg� f fpsp : ð10Þ

We can now write the following energy balance relation:

o

ot
~qqpep
� �

þr 
 ep~qqfpefpvfp
�

þ qp þ eppfpvfp
�

� ep~qqfpvfp 
 g ¼ 0 ð11Þ

with mesoscopic p phase internal energy ep defined by
~qqpep ¼ ep~qqfpefp þ ð1� epÞ~qqspesp .

efp and esp are the internal energies of the p phase
fluid and solid phases and qp is the p phase heat flux.

The usual thermodynamic state equations are assumed

to be valid. In particular, ~qqwp , ~qqcp , and ~qqlp are assumed to

be constants and ~qqgp is given by perfect gas state equa-
tion.

2.2.3. Jump conditions between the p phase and the

gaseous phase

All the mesoscopic quantities can be considered as

continuous, each one in its own phase, but there are

jump conditions across the interface between the p phase

and the gaseous phase. For a detailed derivation of such

conditions, see [9,10]. Let us denote np, the normal to R
in the direction from p to f (Fig. 4), and wR, the velocity

of the interface.

Of course np ¼ �nf , and the jump conditions can be

written:

for the mass balance of the gaseous species number

i (i ¼ F, v;O2, N2 and R):

epSagp ~qqgpyigpðvgp
h

� wRÞ þ jigp

i

 np

þ ~qqfyifðvf
h

� wRÞ þ jif

i

 nf ¼ 0; ð12Þ

We suppose here that no fluid water is flowing from the

p phase.

for the balance of momentum:

�eppfp 
 np þ ~qqfðvf
h

� wRÞ � vþ rf
i

 nf ¼ 0; ð13Þ

for the balance of energy, with the appropriate no-

tations for the indices:

ep~qqfpefpvfp
h

þ qp þ eppfpvfp � ~qqpepwR

i

 np

þ ~qqf ef
	h

þ 1
2
v2f


ðvf � wRÞ � ðqf � rf 
 vfÞ

i

 nf

¼ 0: ð14Þ

3. Averaging procedure and macroscopic vegetal phase

equations

3.1. Average procedure choice

There are several methods for deriving the equations

of an equivalent medium. One which is typically used in

porous medium theory is the method of volume aver-

aging [11,12]. We use here the one developed by Marle

Fig. 4. The direction for the jump across the interface.
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[4] because it is the more simple general method that

leads to a closed set of equations. The method can be

summarised as follows:

1. Describe the mesoscopic system of balance equations

for the bulk phases and the interface jump conditions

between these phases.

2. Use distribution theory for writing the equations, so

that interface jump conditions and bulk phase equa-

tions are not separated.

3. Take the average by convolution of the equations

with a kernel with compact support and choose

macroscopic quantity definitions. At this step, we

get more macroscopic quantities than macroscopic

balance equations.

4. Close the system of equations using a thermodynamic

second principle.

The main difference between this study and Marle’s one

is the use of extended irreversible thermodynamics in

place of irreversible thermodynamics.

3.2. Averaging procedure and definition of the macro-

scopic quantities

The quantities involved in the preceding equations

are defined only on subdomains of the vegetal phase.

Before averaging them, let us extend these functions to

all spaces of the vegetal phase, setting their values equal

to 0 outside their definition domain. These new extended

functions are denoted by superscript _. For example, the

mass density ~qqgp of gas in the p phase is extended to
qgp
_ ¼ ~qqgp inside the p phase and to q

_

gp
¼ 0 outside.

These new functions have derivatives which are no

longer functions but are distributions. We consider the

following equations relating the different derivatives:

rf
_

¼ r ~ff þ ~ff nadRa ;

r 
 f
_

¼ r 
 ~ff þ ~ff 
 nadRa ;

o

ot
f
_

¼ o

ot
~ff � ~ffwRa 
 nadRa ;

where Ra is the boundary of the definition domain of ~ff
or ~ff, wRa is the velocity of the interface, and dRa is the

Dirac measure on Ra. We can write the system of Eqs.
(1)–(11) with the extended quantities, so that Eq. (1), for

example, becomes

o

ot
q
_

f y
_

if

� �
þr 
 q

_

f y
_

if v
_
f

�
þ j

_

if

�
¼ _

x
_
x
_

if þ q
_

f y
_

if v
_
f

�h
� wRp

�
þ j

_

if

i

 nfdRp : ð15Þ

Therefore the new system of equations incorporates the

boundary conditions. To proceed to the averaging of

equations we must consider a function mðxÞ, positive
with a compact support, indefinitely derivable and such

that

Z
mðxÞdx ¼ 1:

The function

mðxÞ ¼ C exp�ð1� ðjxj=rÞ2Þ�1 if jxj=r < 1;
0 if jxj=rP 1

�

is a good candidate. The radius r must be of the size of

the elementary representative volume, and represents the

size of the macroscopic particle. The average value

Gðx; tÞ of a quantity g is then obtained by taking the

convolution product of g and m:

Gðx; tÞ ¼ ðg  mÞðx; tÞ ¼
Z

gðy; tÞmðx� yÞdy:

Whatever the smoothness of g the average value G is as

smooth as the kernel m.

Let us consider vpðx; tÞ and vfðx; tÞ as the character-
istic functions for each phase. The porosity U can be

written as

U ¼ vf  m: ð16Þ

Now all Eqs. (1)–(11) are written as Eq. (15) and we take

the convolution product with the kernel m, Eq. (1) gives,

for example,

o

ot
UqfYifð Þ þ r 
 UqfYifVfð þ JifÞ ¼ U _xxif � K fpi ð17Þ

and the following macroscopic quantities (between

brackets) are defined:

U½qf � ¼ q
_

f  m;

Uqf ½Vf � ¼ q
_

f v
_
f  m;

Uqf ½Yif � ¼ q
_

f y
_

if  m;

UqfYifVf þ ½Jif � ¼ q
_

f y
_

if v
_
f

�
þ j

_

if

�
 m;

U _xxif

h i
¼ _

x
_
x
_

if  m;

Kpfi
h i

¼ q
_

f y
_

if v
_
f

��
� wRf

�

 nRf dRf

�
 m:

The term K fpi represents the rate of mass transfer of the
species number i from phase f to phase p. The total mass

transfer is K fp ¼
P

i K
fp
i . Note that the macroscopic

diffusion Jif is by no means the average of the meso-

scopic diffusion jif .

From the balance of momentum equation (2), we

obtain

o

ot
UqfVfð Þ þ r 
 UqfVfð � Vf �SfÞ

¼ Uqfg� K fpVf � Ffp: ð18Þ

with the following definitions for macroscopic quan-

tities:
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UqfVf � Vf � ½Sf � ¼ q
_

f v
_
f

�
� v

_
f � r

_
f

�
 m;

K fpVf þ ½Ffp� ¼ q
_

f v
_
f v

_
f

��
� wRf

�
� r

_
f

�

 nRfdRf  m:

For the balance of energy equation (3), we get

o

ot
Uqf Ef

��
þ 1
2
V2f

��

þr 
 Uqf Ef

��
þ 1
2
V2f

�
Vf þQf �Sf 
 Vf

�

¼ Uqfg 
 Vf � Pf
oU
ot

� Ef

�
þ 1
2
V2f þ

Pf
qf

�
K fp � X fp

ð19Þ
with

Uqf ½Ef �
�

þ 1
2
V2f

�
¼ q

_

f e
_
f

�
þ 1
2
v
_2

f

�
 m;

Uqf Ef

�
þ 1
2
V2f

�
Vf þ ½Qf � �Sf 
 Vf

¼ q
_

f e
_
f

��
þ 1
2
v
_2

f

�
v
_
f þ q

_

f � r
_
f 
 v

_
f

�
 m;

Ef

�
þ 1
2
V2f þ

Pf
qf

�
K fp þ Pf

oU
ot

þ ½X fp�

¼ q
_

f e
_
f

 " 
þ p

_

f

q
_

f

þ 1
2
v
_2

f

!
v
_
f

�
� wRf

�
þ q

_

f � r
_
f 
 v

_
f

þ p
_

fwRf

#

 nRf dRf

!
 m:

The pressure and the temperature have yet not been

defined. We define these quantities in such a way that the

macroscopic thermodynamic relations have the usual

expressions, i.e.:

for the energy:

Ef ¼
X

i

HifYif �
Pf
qf

; ð20Þ

for the enthalpies:

Hif ¼ H 0
if þ

Z Tf

T0

Cp;if dT ; ð21Þ

for the pressure:

Pf ¼ qfRTf
X

i

Yif=Wi : ð22Þ

In the same way, we define the macroscopic quan-

tities of the p phase. The macroscopic porosity Ep is

defined by

ð1� UÞ½Ep� ¼ e
_p  m:

By the procedure of averaging and convolution, Eq. (4)

gives

o

ot
ð1
�

� UÞð1� EpÞSawpqwp
�

¼ �ð1� UÞ KwpFgp
�

þ Kwpcp
�

ð23Þ

with the following definitions:

macroscopic saturation of the wood

ð1� UÞð1� EpÞ Sawp
� �

¼ 1
�

� e
_p
�
S
_

awp  m;

macroscopic wood mass density

ð1� UÞð1� EpÞSawp qwp

h i
¼ 1
�

� e
_p
�
S
_

awpq
_

wp
 m;

macroscopic mass transfers

ð1� UÞKwpFgp

¼ k
_

wpFgp

�
� 1
�

� e
_p
�
S
_

awpq
_

wp
wRw 
 nRwdRw

�
 m;

ð1� UÞKwpcp ¼ k
_

wpcp  m:

Whilst the mesoscopic mass transfer follows an Ar-

rhenius law such that kwpFgp ¼ AðhpÞe�Ew=Rhp , where hp is

the mesoscopic temperature, the macroscopic temper-

ature is not the average of the mesoscopic temperature

and therefore the macroscopic mass transfer does not

follow, a priori, such a law. As for the phase f, the

macroscopic temperature is not yet defined. Eq. (5)

gives

o

ot
ð1
�

� UÞð1� EpÞSacpqcp
�
¼ �ð1� UÞKcpwp ; ð24Þ

the macroscopic saturation of the char is defined by

ð1� UÞð1� EpÞ Sacp
� �

¼ ð1� e
_pÞS

_

acp  m;

the macroscopic density

ð1� UÞð1� EpÞSacp ½qcp � ¼ 1
�

� e
_p
�
S
_

acpq
_

cp
 m;

and the mass transfers

ð1� UÞKcpwp ¼ k
_

cpwp

�
� 1
�

� e
_p
�
S
_

acpq
_

cp
wRc 
 nRcdRc

�
 m:

In the liquid constituent, we obtain

o

ot
ð1
�

� UÞEpSalpqlp
�
þr 
 ð1

�
� UÞEpSalpqlpVlp

�
¼ �ð1� UÞKlpvgp ; ð25Þ

with the saturation defined by

ð1� UÞEp Salp
� �

¼ e
_p
S
_

alp  m;

the mass density

ð1� UÞEpSalp qlp

h i
¼ e

_p
S
_

alpq
_

lp
 m;
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the velocity

ð1� UÞEpSalpqlp Vlp
� �

¼ e
_p
S
_

alpq
_

lp
v
_
lp  m;

the mass transfer

ð1� UÞKlpvgp

¼ k
_

lpvgp

�
� e

_p
S
_

alpq
_

lp
v
_
lp

�
� wRl

�

 nRldRl

�
 m:

We now consider the gaseous constituent, the saturation

is defined by

ð1� UÞEp Sagp
h i

¼ e
_p
S
_

agp

� �
 m

its mass density qgp is defined by

ð1� UÞEpSagp qgp

h i
¼ e

_p
S
_

agpq
_

gp

� �
 m;

its velocity by

ð1� UÞEpSagpqgp Vgp

h i
¼ e

_p
S
_

agpq
_

gp
v
_
gp

� �
 m;

the mass fractions Yigp by

ð1� UÞEpSagpqgp Yigp

h i
¼ e

_p
S
_

agpq
_

gp
y
_

igp

� �
 m;

and the macroscopic mass diffusion by

ð1� UÞEpSagpqgpYigpVgp þ Jigp

h i

¼ e
_p
S
_

agpq
_

gp
y
_

igp
v
_
gp

�
þ j

_

igp

�
 m;

so that Eqs. (6) and (7) become

o

ot
ð1
�

� UÞEpSgpqgpYFgp
�

þr 
 ð1
�

� UÞEpSagpqgpYFgpVgp þ JFgp

�
¼ �ð1� UÞKFgpwp � KpfFgp ; ð26aÞ

o

ot
ð1
�

� UÞEpSagpqgpYvgp
�

þr 
 ð1
�

� UÞEpSagpqgpYvgpVgp þ Jvgp

�
¼ �ð1� UÞKvgplp � Kpfvgp : ð26bÞ

The mass transfers are defined by

ð1� UÞKFgpwp ¼ k
_

Fgpwp  m;

ð1� UÞKvgplp ¼ k
_

vgplp  m;

Kpfi ¼ e
_p
S
_

agpq
_

gp
y
_

igp
ðv_gp

h�
� wRgp Þ

þ j
_

igp

i

 nRgpdRgp

�
 m:

The total transfer of gas from phase p to phase f is

Kpfg ¼ KpfFgp þ Kpfvgp . The total mass density of phase p and
the barycentric velocity are defined by

qp ¼ Epqfp þ ð1� EpÞqsp ;
qfpVfp ¼ SagpqgpVgp þ SalpqlpVlp

ð27Þ

with qfp ¼ Sagpqgp þ Salpqlp and qsp ¼ Sawpqwp þ Sacpqcp .
Darcy laws in Eq. (9) become

rðð1� UÞEpSagpPgpÞ � ð1� UÞEpSagpqgpg
þ Fgplp þ Fgpsp þ Fpfgp ¼ 0;

rðð1� UÞEpSalpPlpÞ � ð1� UÞEpSalpqlpg
þ Flpgp þ Flpsp þ F

pf
lp
¼ 0

ð28Þ

with the following definitions:

ð1� UÞEpSagpPgp ¼ e
_p
S
_

agp p
_

gp

� �
 m;

Fgpsp ¼ f
_

gpsp  m;

ð1� UÞEpSalpPlp ¼ e
_p
S
_

alp p
_

lp

� �
 m;

Flpsp ¼ f
_

lpsp  m;

KvgplpVgp þ Fgplp ¼ k
_

vgplp v
_
gp

�
þ f

_

gplp

�
 m;

Fpfgp ¼ e
_p
S
_

agp p
_

gp
nRgpdRgp

� �
 m;

KlpvgpVlp þ Flpgp ¼ k
_

lpvgp v
_
lp

�
þ f

_

lpgp

�
 m;

F
pf
lp
¼ e

_p
S
_

alp p
_

lp
nRlp dRlp

� �
 m:

We have Flpgp þ Fgplp þ KvgplpVgp þ KlpvgpVlp ¼ 0.
Equations set (28) will provide the following equa-

tion:

r ð1
	

� UÞEpPfp


� ð1� UÞEpqfpgþ Fgpsp

þ Flpsp þ Fpfgp þ F
pf
lp
¼ 0 ð29Þ

with

Pfp ¼ SagpPgp þ SalpPlp : ð30Þ

The energy balance Eq. (11) can be written as

o

ot
ð1
	

� UÞqpEp


þr 
 ð1

�
� UÞqfpEfpVfp þQp

�
þr 
 ð1

�
� UÞEp SagpPgpVgp

�
þ SalpPlpVlp

��

¼ �Pgp
oð1� UÞEpSagp

ot
� Plp

oð1� UÞEpSalp
ot

�
Pgp
qgp

Kgplp �
Plp
qlp

Klpvgp � EpKpf

� ð1� UÞqfpVfp 
 g� X pf ð31Þ
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with the following definitions:

Epqfp Efp
� �

¼ e
_p

q
_

fp
e
_
fp

� �
 m;

ð1� EpÞqsp Esp
� �

¼ ð1
�

� e
_pÞq_sp e

_
sp

�
 m;

qpEp ¼ EpqfpEfp þ ð1� EpÞqspEsp

and

ð1� UÞqfpEfp þ ð1� UÞEpSagpPgp 
 Vgp
þ ð1� UÞEpSalpPlp 
 Vlp þ ½Qp�

¼ e
_p

q
_

fp
e
_
fp v

_
fp

�
þ q

_

p þ e
_p

S
_

agp p
_

gp
v
_
gp

�
þ S

_

alp p
_

lp
v
_
lp

��
 m;

Pgp
oð1� UÞEpSagp

ot
þ Plp

oð1� UÞEpSalp
ot

þ
Pgp
qgp

Kgplp

þ
Plp
qlp

KlpvgpEpK
pf þ ½X pf �

¼ q
_

fp
e
_
fp v

_
fp

h�
þ e

_pðS
_

agp p
_

gp
v
_
gp þ S

_

alp p
_

lp
v
_
lpÞ

�q
_

p e
_
pwRp þ q

_

p

i

 nRpdRp

�
 m:

As for phase f, the temperature is not yet defined. The

thermodynamical equations take the usual form:

for the internal energy:

qpEp ¼ ð1
"

� EpÞ SawpqwpHwp
�

þ SacpqcpHcp
�

þ Ep Sagpqgp
X

i

HigpYigp

 
þ SalpqlpHlp � Pfp

!#
;

ð32Þ

for the enthalpies:

Higp ¼ H 0
igp

þ
Z Tp

T0

Cp;igp dT ; ð33Þ

for the pressure:

Pgp ¼ qgpRTp
X

i

Yigp=Wigp ; ð34Þ

qwp ; qcp and qlp ¼ constant: ð35Þ

Because of compatibility and jump conditions the

following relations hold:

Sawp þ Sacp ¼ 1; Sagp þ Salp ¼ 1;X
i

Yif ¼ 1;
X

i

Jif ¼ 0; YFgp þ Yvgp ¼ 1;

JFgp þ Jvgp ¼ 0; ð36Þ

Kpfi þ K fpi ¼ 0; ð37Þ

Fpfgp þ F
pf
lp
þ Ffp þ K fpVf ¼ 0; ð38Þ

Ef

�
þ Pf

qf
þ 1
2
Vfj j2

�
K fp þ Pf

oU
ot

þ X fp þ EpKpf

þ Pgp
oUEpSagp

ot
þ Plp

oUEpSalp
ot

þ
Pgp
qgp

Kpfgp

þ
Plp
qlp

Kpflp þ X pf ¼ 0: ð39Þ

3.3. Entropy balance

The averaging method introduces new quantities,

essentially

Fluxes: Jif ; Jigp ; Sf ; Qf and Qp.

Sources: _xxif ; KwpFgp ; Kwpcp ; Klpvgp ; Fgplp ; Fgpsp ; Flpsp ;
K fpi ; Ffp; Fpfgp ; F

pf
lp
and X fp.

For closing the system of equations, we must relate

these quantities to usual mean mechanical variables. Let

us write the variation of the generalised entropy S in the

form

qve
dS
dt

¼ �r 
 JS þ rS ; ð40Þ

where JS is the entropy flux, rS is the entropy production

and qve ¼ Uqf þ ð1� UÞqp. This entropy production
must be positive and can be written as

rS ¼
X
a

JaXa; ð41Þ

where Ja are the fluxes and Xa are the forces.

In extended irreversible thermodynamics the gener-

alised entropy S of the macroscopic medium may de-

pend upon the whole set of variables. The fluxes are a

function of some of the variables defining the system and

of the forces Ja ¼ JaðX1;X2; . . . ; Tp; Tf ; . . . ; Yif ; . . .Þ. As at
equilibrium Jeqa ¼ 0, up to first order one can write:

Ja ¼
X
b

oJa
oXb

� �
eq

Xb þOðXbXcÞ: ð42Þ

Taking into account relation (42), the production of

entropy is positive if there is a positive matrix

M ¼ ðMabÞ such that Ja ¼
P

b MabXb. The coefficients

Mab are phenomenological coefficients. To obtain the

total entropy balance we write

qve
dS
dt

¼ Uqf
dfSf
dt

þ ð1� UÞqlp
dlpSlp
dt

þ ð1� UÞqgp

� d
gpSgp
dt

:

The derivative are along the motion of each phase.

These motions can indeed be considered as independent.

Moreover we suppose that the entropies depend upon

the following variables:
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Sf ¼ SfðEf ; 1=qf ; Yif ;QfÞ

and

Sp ¼ SpðEp; 1=qgp ; 1=qlp ; Yigp ; qwpSawp ; qcpSacp ;

qlpSalp ;Qp;K
pf
i Þ:

So that the differential variation of entropy are

dfS ¼ oS
oEf
dfEf �

oS
oð1=qfÞ

dfqf
q2f

þ
X

j

oS
oYjf

dfYjf

þ oS
oQf

dfQf ; ð43Þ

dpS ¼ oS
oEp

dpEp �
oS

oð1=qgp Þ
dpqgp
q2gp

� oS
oð1=qlpÞ

dpqlp
q2lp

þ
X
a

oS
oðSaqaÞ

dpðSaqaÞ þ
X

i

oS
oYigp

dpYigp

þ
X

i

oS

oKpfi
dpKpfi þ oS

oQp

dpQp: ð44Þ

We can define non-equilibrium temperature and

pressure by

oS
oEf

¼ 1

Hf

and absolute non-equilibrium pressure by

oS
oð1=qfÞ

¼ Pf

Hf

:

In fact if the system is not far from equilibrium the

thermodynamics temperature and pressure can be equal

to the equilibrium temperature and pressure Tf and Pf
[5]. We can use the same argument for the temperature

and pressure of the phase p and define:

oS
oEf

¼ 1

Tf
;

oS
oð1=qfÞ

¼ Pf
Tf

;
oS
oYif

¼ � lif

Tf
;

oS
oQf

¼ � af

Tf
;

oS
oEp

¼ 1

Tp
;

oS
oð1=qgp Þ

¼
Pgp
Tp

;
oS

oð1=qlp Þ
¼

Plp
Tp

;

oS
oYigp

¼ �Ep
qgp
qp

ligp

Tp
;

oS
oðSaqaÞ

¼ �ð1� EpÞ qa

qp

la

Tp
for a ¼ w; c; l;

oS

oKpfi
¼ � bpfi

Tp
;

oS
oQp

¼ � ap

Tp
;

where af and ap are two vectors which are null when Qf

and Qp are null so that we can set

af ¼ afðTf ; qf ; . . .ÞQf

and

ap ¼ apðTp; qp; . . .ÞQp;

where af and ap are two second-order tensors; in the
same way we can set

oS

oKpfi
¼ � bpfi

Tp
Kpfi :

We have to replace all differentials in (43) and (44) by

the appropriate expressions calculated from relations

(16)–(19) and (23)–(31). For example, Eq. (19) written

with the material derivative is

Uqf
dfEf
dt

¼ �r 
Qf þSf 
 rVf � Pf=K fp � X fp

þ Ffp 
 Vf :

After a somewhat lengthy calculation one obtains

Js ¼ Jsf þ Jsp ð45Þ

with

Jsf ¼
Qf

Tf
�
X

i

lif

Tf
Jif ;

Jsp ¼
Qp

Tp
�
X

j

ljgp

Tp
Jjgp :

ð46Þ

The entropy production, which is a large expression, can

be split into several terms:

rs1 ¼ rVf

:
Sf

Tf
�
X

i

Jif 
 r
lif

Tf

� �
�
X

i

Jigp 
 r
ligp

Tp

� �

þ Vf

Tf

 Ffp
	

þ PfrU


þ
Vgp
Tp


 Fgplp

�
þ Fgpsp þ Fpfgp

þ Pgprðð1� UÞEpSagpÞ
�
þ
Vlp
Tp


 Flpgp

�
þ Flpsp þ Fpflp

þ Plprðð1� UÞEpSalpÞ
�
; ð47Þ

rs2 ¼ Qf 
 r 1

Tf

�
� af

Tf

dfQf

dt

�
þQp 
 r 1

Tp

�
� ap

Tp

dpQp

dt

�

� X fp

Tf
� X pf

Tp
; ð48Þ

rs3 ¼ �
X

j

ljf

Tf
_xxjf �

ð1� UÞ
Tp

KwpFgp ½ðYFgp � 1ÞlFgp

� lwp þ Yvgplvgp � �
ð1� UÞ

Tp
Klpvgp ½ðYvgp � 1Þlvgp

� llp þ YFgplFgp � þ
ð1� UÞ

Tp
Kwpcp ½lwp � lcp �;

ð49Þ
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rs4 ¼ Kpfvgp

"
�

bpfvgp
Tp

dpKpfvgp
dt

þ lvf
Tf

ðYvf � 1Þ

�
lvgp
Tp

ðYvgp � 1Þ þ
lFf
Tf

YFf �
lFgp
Tp

YFgp

#

þ KpfFgp

"
�

bpfFgp
Tp

dpKpfFgp
dt

þ lFf
Tf

ðYFf � 1Þ

�
lFgp
Tp

ðYFgp � 1Þ þ
lvf
Tf

Yvf �
lvgp
Tp

Yvgp

#
:

ð50Þ

3.4. Closure relations

We must now write the phenomenological relations

between macroscopic fluxes and the macroscopic quan-

tities gradients. The determination in entropy produc-

tion of what a flux is and what is its associated force is

indeed a matter of choice, but the products involved in

the production of entropy must be made up of inde-

pendent variables. In fact, as expressed by Eq. (42) the

fluxes should depend upon all the forces, provided that

the force associated with a flux must be a tensor of the

same rank. For example, in order that the term

Vf=Tf 
 Ffp þ PfrU
	 


is positive, we can suppose then

that there is a positive second-order tensor jf such that

Vf ¼
jf

lfU
2
Ffp
	

þ PfrU


; ð51Þ

where lf is the macroscopic viscosity and jf is the per-
meability tensor.

The stress tensor has the usual form

Sf ¼ � UPf
�

þ 2
3
gfbr 
 Vf

�
Idþ 2gfvDf ; ð52Þ

Df ¼ 1
2
ðrVf þt rVfÞ being the rate of strain tensor. So

that the balance of momentum for the f phase is

o

ot
UqfVfð Þ þ r 
 UqfVfð � Vf � rfÞ

¼ Uqfg� K fpVf þ lfU
2j�1
f Vf þ PfrU: ð53Þ

For analogous reasons we can consider the generalised

Fourier’s law:

sp
dpQp

dt
þQp ¼ �kprTp þ

X
i

HigpJigp þQpr;

sf
dfQf

dt
þQf ¼ �kfrTf þ

X
j

HjfJjf þQfr;

ð54Þ

where HigpðTpÞ and HifðTfÞ are the enthalpies of species
number i. We have separated the radiant heat fluxes Qpr

and Qfr. sp and sf are the relaxation coefficients and kp
and kf are the conductivity coefficients. As the model
contains two temperatures, there is a heat flux inside the

particles given by

X pf ¼ vðTf � TpÞ; ð55Þ

where v is a phenomenological coefficient.
The balance of the different chemical species during

the chemical reactions gives the following relations:

� _xxO2f =mOWO2 ¼ � _xxFf=mFWF ¼ _xxRf=mRWR ¼ w; ð56Þ

w is the rate of mole production. As the reactions are of
total order mF þ mO:

w ¼ kðTfÞðqfYFÞ
mF ðqfYO2Þ

mO : ð57Þ

From rs4 Eq. (50) we can propose the following re-

lations:

K11
bvgp
Tp

dpKpfvgp
dt

þ Kpfvgp

¼ K11
lvf
Tf

ðYvf
�

� 1Þ �
lvgp
Tp

ðYvgp � 1Þ
�

þ K12
lFf
Tf

YFf

�
�

lFgp
Tp

YFgp

�
;

K21
bFgp
Tp

dpKpfFgp
dt

þ KpfFgp

¼ K21
lFf
Tf

ðYFf
�

� 1Þ �
lFgp
Tp

ðYFgp � 1Þ
�

þ K22
lvf
Tf

Yvf

�
�

lvgp
Tp

Yvgp

�
: ð58aÞ

where the Kij are phenomenological coefficients. The

right-hand side of equation set (58a) is linear in the Yip

and Yif , so that it can be generalised to

si
dpKpfi
dt

þ Kpfi ¼ fiðTp; Tf ; YFp; Yvp; Yof ; . . . ; YPfÞ:

The fiðTp; Tf ; YFp; Yvp; Yof ; . . . ; YPfÞ is a phenomenological
function derived from experiments. We assume the fol-

lowing non-linear chemical kinetics:

sv
dpKpfvgp
dt

þ Kpfvgp ¼ kpfv ðTf ; TpÞlvðYvgp ; YvfÞ;

sF
dpKpfFgp
dt

þ KpfFgp ¼ kpfF ðTf ; TpÞlFðYFgp ; YFf Þ
ð58bÞ

and KpfO2 ¼ KpfN ¼ KpfR ¼ 0; we can assume relations such
as

kpfi ðTp; TfÞ ¼ Ai exp

�
� Ei

2R
1

Tp

�
þ 1

Tf

��
;

i ¼ vgp ;Fgp : ð59Þ
The function lðYi; YjÞ must be determined experimentally
but we can choose lðYvgp ; YvfÞ ¼ ðYvgp � YvfÞþ or

lðYvgp ; YvfÞ ¼ Yvgp , f
þ is the function equal to f if f is

positive, and to 0 if f is negative, and analogously
lðYFgp ; YFfÞ ¼ ðYFgp � YFfÞþ or lðYFgp ; YFfÞ ¼ YFgp .
The non-linear chemical kinetics can be interpreted

as new macroscopic reactions that we call volatilising

reactions:
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Volatilisation :
Fuelp !

kpf
F
Fuelf

ðH2OÞvp !
kpfv ðH2OÞvf

8><
>:

We have defined the mass rate transfer from wood to

fuel (for example) by KwpFgp ¼ kwpFgp  m, where kwpFgp
defined by an Arrhenius law, is a function of the

mesoscopic temperature. One expects that KwpFgp should
be expressed in the same way, but as a function of the

macroscopic temperature, so that we can define

KwpFgp ¼ kwpFgpðTpÞð1� EpÞSawpqwp : ð60Þ

By an identical reasoning we can deduce that:

Kwpcp ¼ kwpcpðTpÞð1� EpÞSawpqwp ; ð61Þ

Klpvgp ¼ klpvgp ðTpÞE
pSalpqlp ð62Þ

with kij ¼ Aij expð�Eij=RTpÞ.
Eij is the activation energy of the reaction i ! j, R is

the ideal gas constant. Now from Eq. (47) we deduce

that there are two positive tensors jlp and jgp such that

Vlp ¼
jlp

llpðð1� UÞEpSalpÞ
2
ðFlpgp þ Flpsp þ F

pf
lp

þ Plprðð1� UÞEpSalpÞÞ; ð63Þ

Vgp ¼
jgp

lgpðð1� UÞEpSagp Þ
2
ðFgplp þ Fgpsp þ Fpfgp

þ Pgprðð1� UÞEpSagpÞÞ: ð64Þ

For the mass diffusion in general the law should be

Jia ¼ �Liarðlia=TaÞ, however usually one considers

Fick’s law:

Jif ¼ �UqfdifrYif ;

Jigp ¼ �ð1� UÞEpSagpqgpdigprYigp :
ð65Þ

The thermodynamic state laws are given by relations

(20)–(22) and (31)–(35).

3.5. Radiant heat fluxes

The derivation of a radiation model in a porous

medium is beyond the scope of this paper (see [13] for

more details on the subject), instead we consider a

simplified but appropriate model. We suppose that the

heat flux Qfr is null, because the gaseous phase is con-

sidered as a transparent medium, and the flux Qpr is

related to the spectral intensity Lk by the expression

Qprðx; tÞ ¼
Z 1

0

Z
4p
Lkðx; u; tÞudXdk; ð66Þ

where k, is the wavelength and dX the elementary solid
angle in the direction u.

The spectral intensity is supposed to satisfy the

equation of transfer in an absorbing and emitting me-

dium:

1

c
oLk

ot
þr 
 Lk ¼ �KkLk þ Ik; ð67Þ

where c is the light speed. The term ð1=cÞoLk=ot can be
neglected, because the propagation time of light is very

small compared to characteristic time for transfer of

mass, momentum and energy. The source term Ikðx; u; tÞ
is given by

Ikðx; u; tÞ ¼ akL
0
k Tpðx; tÞ
	 


þ rsk
4p

�
Z
4p
Lkðx; u; tÞUkðx; u; u0ÞdX0: ð68Þ

3.6. Discussion

This model, although complex, is probably the sim-

plest which takes into account the variety of scales and

physical phenomena. It has several interesting features.

The ’’vegetal particle’’ (corresponding to the equivalent

medium) has two temperatures, so that the two phases

cannot be in thermal equilibrium. As in any equivalent

medium model, the size of the representative element

volume, on which the average is taken, is an important

parameter. This size can be important, if the forest

vegetation is dispersed, so that the model should take

into account the possible variation of each temperatures

Tf and Tf inside the particles. Thus extended irreversible
process thermodynamics has been used for the closure of

the equations, to obtain generalised Fourier law allow-

ing possible thermodynamic non-equilibrium of the

particles. Moreover it is interesting to compare the

model obtained by this approach to the ones obtained

by other means such as homogenisation theory [14].

Homogenisation gives models with only one tempera-

ture and the thermal equation can be written as Eq. (16)

in [15]

hqCi oT
ot

� qfCf

Z t

�1
K̂Kðt � sÞ o

2T
ot2
ds

¼ r 
 keqrT
	 


; ð69Þ

where K̂K is the memory function. In many cases we can
assume that there is only one temperature. If the gen-

eralised Fourier law (54) is assumed, the corresponding

thermal equation will be of second order in time in our

modelling. But integrating by parts in Eq. (69) will

provide

hqCi oT
ot

� qf
X
i>1

Ci
oiT
oti

¼ r 
 keqrT
	 


: ð70Þ
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Indeed in the sum of Eq. (70) only a few terms

should be considered. We could have considered

higher-order time derivatives of heat flux for obtaining

a sum as Eq. (70). Therefore the results obtained by

homogenisation theory and extended irreversible ther-

modynamic are compatible. It can be seen from Eq.

(53), that if the porosity is very small, we can neglect

the right term of the balance of momentum, so that the

equation for the flow reduces to Darcy’s law. Therefore

the flow inside the vegetation can be ruled by Darcy’s

law or Brinkman law depending on the size of the

obstacles in the elementary cell compared to the size of

the cell (see [14] for a discussion). For Brinkman’s law

the Navier–Stokes equation must be supplemented by

a term M 
 V, linear in the velocity V, where the term

mij of the matrix M represents the components in the

direction n�i of the drag force exerted by the solid
phase, when a unit pressure gradient is exerted in the

direction n�j. For both cases (Darcy’s law or Brink-
man’s law) the matrix M or the permeability tensor

k can be calculated or experimentally determined. A

first attempt has already been made, using a fractal

modelling of vegetation, to estimate these terms (see

[16]).

4. Macroscopic equations above the forest, into the ground

and interface conditions between the forest and above it

4.1. Macroscopic equations above the forest and into the

ground

We consider here the equations above the vegetation

and into the ground. These equations are the same at

macroscopic and mesoscopic description. The gaseous

phase above the vegetation or ambient air is a mixing of

gases involved in combustion or the results of combus-

tion and steam. We can consider:

1. oxygen O2,

2. inert gases, mainly nitrogen N2,

3. steam ðH2OÞv,
4. the gaseous fuel due to pyrolysis denoted by F, and

5. the residues of combustion, denoted by R.

The mass density of the species number i will be denoted

by qi and its molar mass by Wi . The total density �qq is
then defined by q ¼

P5
i¼1 qi. The mass density of ith

species is Y i ¼ �qqi=q.
These species combustion kinetics are described

through an overall, second-order reaction

mFFþ mOO2 !
k

mRR ð71Þ

_xxi denotes the rate of mass production of the species

number i. The balance of species gives the following

relations:

� _xxO2=mOWO2 ¼ _�xx�xxF=mFWF ¼ _xxR=mRWR ¼ w; ð72Þ

where w is the rate of mass production in the oxidation
reaction (71). This reaction is of the total order mF þ mO,
and then: w ¼ kðT ÞðqYFÞmFðqYO2Þ

mO

w ¼ kðT ÞðqYFÞmFð�qqYO2Þ
mO ; ð73Þ

where T is the temperature in the ambient air. The

macroscopic equations in X are the equations for the

mixing of perfect gases, which are [8]:

balance of mass for the species number i

o

ot
qY i

	 

þr 
 qY �VV

�
þ �JJi

�
¼ _xxi; ð74Þ

balance of momentum

q
o�VV

ot

 
þ �VV 
 r�VV

!
�r 
T ¼ �rP þ qg; ð75Þ

balance of total energy

o

ot
q E
��

þ 1
2

�VV
��� ���2���r 
 q E

��
þ 1
2

�VV
��� ���2��VVþQ

�S 
 �VV
�
¼ q�VV 
 g ð76Þ

with �VV the velocity of the centre of mass, P the pressure
and E the total internal energy. Because of the definition
of the mass density and the conservation of the total

mass we have
P5

i¼1 Y i ¼ 1 and
P5

i¼1
�JJi ¼ 0:

The stress tensor �SS ¼ � �PPI þT is defined by

S ¼ � P
�

þ 2
3

lr 
 V
�
Iþ 2l�DD; ð77Þ

where I is the identity, and �DD ¼ 1
2
ðr�VVþt r�VVÞ. The heat

flux is given by

�QQ ¼ �krT þ
X5
i¼1

Hi
�JJi þ �QQr:

HiðT Þ ¼ H
0

i þ
Z T

T0

CP ;i dT

ð78Þ

is the enthalpy of the species i and �QQr is the radiative

flux vector. The diffusive fluxes �JJi are given by Fick’s

law

�JJi ¼ �qdirY i: ð79Þ

The state equation for the gas is that of perfect gases,

that is

P ¼ R0T
X5
i¼1

Y i=W i: ð80Þ

The total mass enthalpy is H ¼
P5

i¼1 Y iHi, and then the

total energy is

E ¼ H � P=q: ð81Þ
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The equations in the ground reduce to balance of energy

q
oE
ot

þr 
Q ¼ 0 ð82Þ

with

Q ¼ �krT ; and E ¼ CpT þ E0: ð83Þ

4.2. Interface conditions between the forest and above it

At the interfaces R, there are some macroscopic in-
terface jump conditions for the macroscopic quantities,

that must be added, to relate the equations written in X
and X bulk phases. Let us write �nn, the unit normal vector
to the interface R directed from phase X toward phase X,
and ½G�ff ¼ G� Gf the jump of G across R. From a rig-
orous point of view, these relations should be derived

from mesoscopic equations in the two bulk phases X and
X by a thermodynamic macroscopic description of the

interface R. Volume average calculus has been done by
Ochoa-Tapia and Whitaker [10,17] for the interface be-

tween a two temperature porous medium and a

homogeneous fluid. Nevertheless, we assume local ther-

modynamic equilibrium at the interface R. The temper-
ature Tf is continuous across the interface, i.e. Tf ¼ T
and the tangential component of the velocity can also be

considered as continuous. Then only interfacial balances

are needed. We postulate these interfacial jump condi-

tions for our porous medium with microstructure. Let us

define _MM f and _MM f by _MMf ¼ UqfVf 
 �nn and _MM f ¼ �qf �VVf 
 �nn.
Then the jump conditions are the total balance of mass

_MM f þ _MMf ¼ 0; ð84Þ

the balance of mass for the different species

_MMfYif þ _MM fY if þ ½Jif �
�ff
f 
 �nn ¼ 0; ð85Þ

balance of momentum

_MMf ½V�
�ff
f � ½S��fff 
 �nn ¼ 0; ð86Þ

and balances of energy

_MMf E
�

þ 1
2
V2
��ff
f

� Q½ þS 
 V��fff 
 �nn ¼ vðTf � TpÞ; ð87Þ

Qp 
 �nn ¼ vðTp � TfÞ: ð88Þ

The jump conditions across the interface R are sim-
ilar to the above relations with no mass transfer and no

velocity but now Tp ¼ T . Let us write n, the unit normal
vector to the interface R directed from phase X toward
phase X. Then

ðQf þSf 
 VfÞ 
 n ¼ vðTp � TfÞ; ð89Þ

ðQp �QÞ 
 n ¼ vðTf � TpÞ: ð90Þ

This achieves the derivation of the complete model.

5. Simplification of the previous system of equations

We describe what may be the main physical processes

involved in forest fire propagation. If there is a sufficient

heat source, the wood will firstly be dried. During this

phase, the vaporisation of the water will use a large part

of the thermal energy. Once the wood is dried the tem-

perature will increase up to a value where pyrolysis takes

place. During pyrolysis, the cellulose (and other volatile

components) will decompose into flammable gases. If

the outflow of flammable gases is sufficient, the gases

will burn and a flame will develop above and inside the

vegetal stratum. The heat released during combustion is

the heat source necessary to continue the process. In the

vicinity of the flames, the gases will move upward, due to

the conservation of mass, and a flow of fresh air,

bringing oxygen to the combustion, will occur inside and

outside the vegetation. One can appreciate the im-

portance of the permeability of the vegetal medium on

the spreading of the fire.

For analysing the energy transfer in the porous phase

we consider Eqs. (19) and (31) of balance of energy. At

first approximation we can assume that the vegetation

forming this phase is at rest, and then, that the kinetic

energy is negligible. We do not consider here the possi-

bility of oscillations for the twigs and the branches. The

energy due to the mass transfer from the twigs to the

fluids domain is also negligible. The ‘‘relaxation times’’

coefficients in the generalised Fourier laws Eq. (54),

which are related to the memory of the media or to the

lack of thermal equilibrium of the particles will also be

considered as small. This hypothesis is probably very

questionable because of the assumed size of particles,

but the experimental determination is a very hard task.

Moreover, we suppose that the Lewis number in the gas

is closed to unity. We neglect advection terms, pressure

and porosity variations in the porous phase. With these

assumptions in mind, the energy equations (19) and (31)

in each phase of the particle reduce to

ð1� UÞqpCpP
oTp
ot

þr 

	
� kprTp þQpr



¼ Rpc � vðTf � TpÞ; ð91Þ

UqfC
f
P

oTf
ot

�
þ Vf 
 rTf

�
þr 
 ð � kfrTf þQfrÞ

¼ vðTf � TpÞ þ Rfc: ð92Þ

In Eq. (92) we have neglected the dissipationTf :rVf
and the variation of the porosity. The coefficients CpP and
CfP are the total specific heat given by

CpP ¼ 1ð � EpÞ Swp
qwp
qp

CP ;wp

 
þ Scp

qcp
qp

CP ;cp

!

þ Ep Sgp
qgp
qp

X
i

YigpCP ;igp

 
þ Slp

qlp
qp

CP ;lp

!
;
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CfP ¼
X

YifCfP ;i;

and Rfc and Rpc are the chemical energy source terms.
The heat released by chemical reactions in the particle

can be written:

Rpc ¼ � 1ð � EpÞ SawpqwpQwp
�

þ SalpqlpQv
�

ð93Þ

with

Qwp ¼ kwpFgpðTpÞQwpFgp þ kwpcpðTpÞQwpcp ;

Qv ¼ klpvgpðTpÞQlpvgp ;

where Qa are the energy produced by the reaction

numbered a. They are the standard heat released by the
chemical a reaction at temperature Tp. The only chemi-
cal reaction in the gaseous phase is the combustion of

flammable gases released by pyrolysis, so that

Rfc ¼ �kðTfÞðqfYFfÞ
mF ðqfYOfÞ

mOQ; ð94Þ

where Q is the energy produced by the reaction of oxi-

dation. The mass balance relations in phase p reduce to

o

ot
ð1
�

� UÞð1� EpÞqwpSawp
�

¼ �ð1� UÞð1� EpÞqwpSawpkwpðTpÞ; ð95Þ

o

ot
ð1
�

� UÞð1� EpÞSacpqcp
�

¼ �ð1� EpÞ
�
� k1ðTpÞð1� UÞSawpqwp

�
; ð96Þ

o

ot
ð1
	

� UÞepSalp


¼ �klpvgp ðTpÞE

pSalp ð97Þ

with kwp ðTpÞ ¼ kwpFgpðTpÞ þ kwpcpðTpÞ.
For obtaining the quantities YFf and YOf , let us write

Eq. (17) for the fuel F and the oxygen O:

o

ot
UqfYFfð Þ þ r 
 ðUqfYFfVf þ JFfÞ

¼ �UmFWFw þ KpfFgp ; ð98Þ

o

ot
UqfYOfð Þ þ r 
 ðUqfYOfVf þ JOfÞ ¼ �UmOWO2w; ð99Þ

where the KpfFgp is given by Eq. (58b).
Using Eqs. (17), (51) and (52) the velocity Vf satisfies

the relation

Uqf
oVf

ot

�
þ Vf 
 rVf

�

¼ �UrPf �r 2

3
gfbr 
 Vf

� �
� lfU

2j�1
f Vf þ Uqfg

þ KpfVf þ gfvDVf : ð100Þ

Considering the thermal equations (91) and (92), the

pyrolysis and vaporisation equations (95)–(97) and the

balance of mass for gaseous constituent equations (98)

and (99), supplemented by the heat sources due to

radiation, given by Eqs. (66)–(68), the chemical reac-

tions (56) and (57), the thermodynamical relations (32)–

(35) and the balance of momentum equation (100) we

have a close model.

Vegetation can be modelled by fractals cf. [16], with a

heat exchange area which can be very large. Thus the

two phases of the vegetal particle should be near thermal

equilibrium and Tp ¼ Tf ¼ T at first approximation. In
this case one can consider a ‘‘one temperature model’’,

where there is only one balance energy equation, instead

of Eqs. (91) and (92), which can be written

UqfC
f
P

	
þ ð1� UÞqpCpP


 oT
ot

þ UqfC
f
PVf 
 rT

þr 

	
� keqrT þQfr þQpr



¼ Rfc þ Rpc: ð101Þ

If we consider that the velocity of the fluid is given or

imposed, we can drop the balance of momentum equa-

tion (100) and keep only equations related to conser-

vation of mass, so that we obtain a reaction–diffusion

system. This reaction–diffusion model is similar to those

postulated by Weber [18] and by Albini [19].

6. Conclusion

The global three-dimensional model that we derived,

although complex, is probably the simplest which takes

into account the variety of scales and physical

phenomena for the combustion of the vegetation. De-

fining the vegetation as a porous medium, the equations

of the mean equivalent medium have been derived by the

method of volume averaging. Because of the possible

large size of the averaging volume the closure of equa-

tions is obtained using extended irreversible thermody-

namics. This approach provides a means of estimating

physical parameters such as heat conductivity or per-

meability, using homogenisation theory [14,20] for ex-

ample, and mesoscopic values of parameters (such

mesoscopic values are accessible by laboratory exper-

iments). The permeability tensor jf in Eq. (100) is only
dependent on the geometry of vegetation in the pore,

does not depend on the macroscopic flow and can be

calculated [16]. One feature of the model, which has not

been yet exploited is the possibility for the temperature

equations to be hyperbolic, which provides a finite speed

for the propagation of temperature. We have seen that

the equation for the balance of momentum must be

supplemented by a drag term �K fpVf � Ffp, see Eq. (18),

however for very compact vegetation, the flow can be

ruled by Darcy’s law. Models closely related to the one

presented here as the one derived by Joulin [21], for

particle-laden gaseous flames, have been derived. But

they do not try to include the internal structure of the

1720 O. S�eero-Guillaume, J. Margerit / International Journal of Heat and Mass Transfer 45 (2002) 1705–1722



fuel, although the model presented here includes fine

structure of the vegetation. The coefficients si in equa-
tion set (58b) are relaxation times involved in the mi-

gration of gases in the wood. They are related to the

microstructure of the wood: if the permeability (or po-

rosity) of the wood tends to zero, si must tend to infinity,
and conversely if the permeability of the wood tends to

infinity, relaxation times si must tend to zero. Note that
the influence of the porosity of wood may be of some

importance in the modelling of the fighting. One of the

chemical additives added to the water dropped by air-

crafts is a polyphosphate. Under the action of heat this

product is transformed into phosphoric acid which at-

tacks the surface of the vegetation and changes its po-

rosity. In order to model fire fighting where retardants

are used, one can consider that retardants affect the

activation energy of pyrolysis reactions and combustion

reactions, if the retardant action is mainly in the gaseous

phase, or by decreasing the porosity of the wood, if the

retardant action is mainly at interface between p phase

and f phase.

However a complementary work has to be done on

the modelling of radiation inside vegetation. Moreover

the equations for the ambient air (above vegetation) are

not completely satisfactory. They are considered as the

prolongation of the equations of the fluid phase inside

vegetation and then contain no consideration on a

possible solid phase. Therefore if one considers that the

soot is rather produced in the flame above the vegeta-

tion, its influence is not taken into account because no

solid phase has been considered in Eqs. (71)–(83).

An analysis of the different scales involved in the

spreading of fire has been provided in this paper, but

only the microscopic to the macroscopic scales has been

considered. The numerical simulation of this ‘‘complete’’

model is beyond the scope of this work. This calculation

should include radiation heat transfer and then the

system to be simulated is very complex. Such simulation

would provide the position, and then the propagation,

of the front flames but as the size of the fire will grow,

the size of the computation domain will increase with

time, rendering the computation almost impossible.

Therefore it is tempting to look for simplified models

tackling more specifically with the propagation. The

largest scale evoked previously was the ‘‘gigascopic’’

scale see Fig. 2. At this scale, the fire interacts with wind

and topography of the ground, the height of the

vegetation may appear as a small parameter. Using

some ‘‘boundary layer’’ hypothesis, one can derive two-

dimensional models. The study of the derivation of

simplified two-dimensional reaction–diffusion model, by

asymptotic analysis, is the scope of part II of this paper.

In fact seeing the type of the modelling of forest fire one

can recognise two generic approaches of modelling (in

general): a first way going from the simple to the com-

plex where ‘‘simple’’ models are enlarged in order to

predict as correctly as possible the needed information.

A second way going from the complex to the simple

where ‘‘complete’’ models are reduced in order to obtain

the simpler of the biggest models. One could postulate

that the modelling is finished when the two approaches

provide the same type of models.
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