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Abstract

In this study we derive a three-dimensional forest fire combustion model. The forest is modelled as a diphasic
medium composed of a gaseous and a porous vegetal pyrolysis phase. A formal averaging method and a thermody-
namic closure by use of extended irreversible thermodynamics are used to give a complete set of coupled non-linear
equations for this diphasic medium. This set of equations deals with the processes of drying, the pyrolysis of the vegetal
phase, and the combustion of the pyrolysis gases in this gaseous phase. A three-dimensional reaction diffusion equation
for the forest fire propagation with a non-local radiation term is then derived under some simplified hypothe-

ses. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Every year, about 750 thousand hectares of forest are
burnt in northern America versus only 40 thousand
hectares of forest in Europe which is comparatively low.
This destruction represents a direct cost of 2 billion
dollars a year in the USA. Simulation of forest fire
propagation can serve several purposes. The prevision of
the fire front can help firemen in optimising the distri-
bution of fighting means, which supposes real time
simulation. Another application of simulation relates to
fire prevention. Using terrain data, computer models of
propagation could provide information on dangerous
areas. The possibility for such models to take into ac-
count some aspects of means of fire fighting, such as
chemical retardants, should be highly desirable.

However currently the fire spreading simulators are
far from being scientifically satisfactory. The reason is
that forest fire is a complex large scale natural
phenomenon that takes into account both the chemico-
physical aspect of the combustion of the forest stratum
that produces heat and the local meteorological forecast.
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These two aspects are coupled together because wind
activates fire and fire is a heat source that induces con-
vection above the forest. The topography of the land-
scape has a great importance upon forest fire prevision
as well. It is worthwhile noticing that a great part of the
difficulty for modelling forest fires consists in describing
the physical mechanisms taking place inside the vegetal
stratum.

Rothermel’s model [1] gives the fire heat source and
the fire straight front velocity as analytical empirical
laws for a uniform forest. The computation is very fast,
but the empirical laws are usually obtained from lab-
oratory experiments, not from real fire experiments, so
the transposition is sometimes difficult. Complete forest
fire physical models taking better account of physical
mechanisms taking place inside the vegetal stratum have
been proposed by Grishin [2] and Larini et al. [3]. These
models are based upon global balance laws of mass
energy and momentum. They consider the forest as a
porous medium, composed of a gaseous phase and a
vegetal phase, i.e. the wood, the stacks, the leaves, etc.,
in which transfer of mass, energy and momentum takes
place. With the two physical models a great effort has
been exerted for modelling combustion in the vegeta-
tion. The set of equations given in Grishin’s model is
postulated on both basic half scale experimental data
and physical balance laws governing transfer in porous
media. This model is closed and is adequate for the
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Nomenclature

Macroscopic quantities

d occupation density (dimensionless)

E internal energy (J kg™")

F* momentum transfer from phase j toward
phase k (kg m™? s72)

H internal enthalpy (J kg™")

1 radiative source term (W m™* sr™1)
flux of mass diffusion (kg m~2 s7!)

K* internal mass transfer from phase j toward
phase k (kg m > s71)

4

L spectral intensity (W m~> sr™')

P pressure (Pa)

Q heat flux (W m™2)

0O, puissance produced by chemical reaction
number i (W kg™")

R. chemical reaction source term (W m™>)

Sa saturation of solid or fluid elements
(dimensionless)

T temperature (K)

A% intrinsic velocity (m s™')

w molar mass (kg kmol™)

X7k puissance transfer from phase j toward phase
k(W m™)

Y mass fraction (dimensionless)

Greek symbols

&P porosity of the wood as a porous medium
(dimensionless)

permeability tensor (m?)

intrinsic mass density (kg m™)

total stress tensor (N m~2)

viscous stress tensor (N m~2)

porosity of the vegetal combustible phase
(dimensionless)

SR A

W rate of mole production (kmol m~3 s7!)

@; rate of mass production of the species number
i(kgm® s

Q space region

Superscripts

- variable above the vegetation layer

~ mesoscopic quantities

- vegetal combustible phase extended functions

Subscripts

char

gaseous fuel

fluid phase in vegetal phase

gas in porous phase

ith gas species

j» k  generic subscripts for gas in porous

phase

liquid (water)

oxygen

porous phase

(vegetal)

residues of combustion

radiation term

mesoscopic solid phase (union of wood and

char components)

tar

vapour

wood

- variable under the vegetation
layer

~0a =m0

o O~

w o=

£ < -

Mesoscopic quantities
internal energy (J kg™")

h internal enthalpy (J kg™")

£ momentum transfer from phase j toward
phase k (kg m™ s72)

i flux of mass diffusion
(kgm2 s

kg internal mass transfer from phase j toward
phase k (kg m™> s7!)

k permeability tensor (m?)

)4 pressure (Pa)
q heat flux (W m™2)
S

a saturation (dimensionless)

v intrinsic velocity (m s™')

y mass fraction (dimensionless)

&P porosity of the wood as a porous medium
(dimensionless)

o intrinsic mass density (kg m™)

o total stress tensor (N m™2)

Yer viscous stress tensor in the gaseous phase
(N m™?)

; rate of mass production of the species number
i(kgm™ s

prediction of general forest fire propagation. The closure
is obtained by physical intuition and experimental ob-
servations. Nevertheless, it is very difficult to derive
physical laws from laboratory experiments such that the
similarity conditions are satisfied. On the other hand, the
model of Larini et al. is derived by use of the formal
averaging method and the closure is obtained after some
restrictive assumptions, for example that the gaseous

heat conduction is so that negligible, and invoking some
empirical laws. Moreover, the derived set of equations is
not closed because coupled small scale flow resolution is
still needed.

It is therefore of interest to completely derive again a
closed set of equations for the combustion inside the
forest, as that of Grishin, by use of a general closing
tool, i.e. by the derivation of a combustion model of
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forest vegetation. We adapt Marle [4] general math-
ematical closing method. This closed set of equations
deals with gaseous heat conduction and considers the
porous character of the vegetal phase, i.e. of the wood,
and pyrolysis gases convection into it so that this model
should better take into account the mechanisms involved
at branch scale, such as drying and pyrolysis, that the
model of Larini does. To our best knowledge, macro-
scopic equations for such a porous medium, the solid
part of which is a porous medium too, are not known so
that we derive such an equivalent medium for the forest
combustion by a general method of scale changing. We
use extended irreversible thermodynamics because of the
probable large size of the averaging volume. Let us recall
that thermodynamics is qualified to be “extended” if
there are differential fluxes in Gibbs relation [5]. Ex-
tended thermodynamics adds relaxation coefficients in
phenomenological closure relations that become differ-
ential. We would like to get such relaxation coefficients
in our macroscopic equations because they are suspected
to be of importance in porous medium heat and mass
transfers [6].

In Section 2 we will analyse the different scales of the
system and the physical mechanisms involved at these
scales. This is the first essential basic stage of modelling.
The mesoscopic description of the vegetation is given
too. In Section 3 we will derive the equations for the
vegetal combustible phase from this mesoscopic set of
equations by homogenisation tool and include discus-
sion on the closure hypotheses. In Section 4 we will give
the equations for above the forest, into the ground and
interface conditions between the forest and above it.
Then in Section 5 we will simplify the model, and obtain
a reaction diffusion equation.

2. Analysis of the scales and mesoscopic description
2.1. Geometry and scales description of the forest fire

If we consider a small intensity developed fire, the
range of fire sizes is several hundred meters to several

kilometres. In this scale, that we call “gigascopic’ scale,
the vegetation appears as a thin layer and the fire front is

Ambient air Q
z Vegetal
Stratum
Q
y X "

"';-§6iil- ﬁ( Trunk
Q

Litter

a one-dimensional line moving along a two-dimensional
surface and the fire interacts with the topography and
meteorology.

The typical size of the forest structure description is
the thickness of the vegetation layer or the height of the
flames. In this scale, that we call “macroscopic” scale
and denote /r, we consider three regions (Fig. 1). The
region above the vegetation, denoted by Q and called
“ambient air”, is composed of a gaseous phase. Tall
flames can develop in this region. The quantities as-
sociated with this region will be overlined. The region
under the vegetation, i.e. ground, is denoted by Q. The
quantities associated with this region will be underlined.
The vegetation layer is finally denoted by Q.

The forest is stratified due to the different types of
vegetation at different altitudes. For the sake of sim-
plicity we will consider a forest with only one stratum
and the ground will be considered as adiabatic. Hori-
zontal heterogeneity of vegetation repartition may ap-
pear at the macroscopic scale if the vegetation layer is
composed of a “vegetal combustible phase” (bushes)
and a non-combustible one with no bushes (Fig. 2,
macroscopic scale). “Occupation density” d charac-
terises this repartition at gigascopic scale. It is the pro-
portion of area occupied by the vegetation. In this scale
the fire interacts with the local wind into the vegetation
layer. Interface balances between the vegetation stratum
and the gas above must be used.

The vegetal combustible phase (called vegetal phase
in the rest of the paper) must be modelled. It is con-
sidered as a macroscopic porous medium composed of
the vegetation and of a gaseous component. The typical
size of its structure description is the “mesoscopic” scale,
denoted by /, (Fig. 2). This is a diphasic medium com-
posed of a “gaseous phase” or f phase with the index f
(fluid), and of the “vegetation’ or p phase with the index
p (porous, we will see later that the vegetation is con-
sidered as a porous medium). The geometry of the p
phase in the meso- to macroscopic elementary cell plays
a prominent part in the energy exchange. Let J; and V,
be the volumes of the f phase and of the p phase and
V =V + V, the volume of the elementary cell. In ad-
dition to the porosity @ = V;/V, the ratio ¢ of the sur-
face to the volume of the pieces of vegetation is of great

I‘ HI h(x,y)

Bushes z=2(xy)

Fig. 1. Different forest regions.
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Macroscopic scale
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Fig. 2. Link between macroscopic, mesoscopic and microscopic scales.

importance. The greater the o, the more the energy
transfer that is increased between the solid and the faster
the fire advances. If we compute the Reynolds number
Re, with the pore size as length scale, we can estimate
that 38 < Re < 1900. These values are obtained for air
at 800 °C, for a velocity of 0.5 m s~ and a characteristic
length between 1072 and 5 x 10~! m. Therefore if the
vegetation is very “‘compact” the flow, at the pore level,
is not turbulent and the main reason for the oscillations
of the velocity is the porous character of the forest me-
dium.

At the lowest level, that is in the microscopic scale,
denoted by I, the p phase is a multiphasic medium it-
self. It is composed of three phases: the solid phase, the
liquid phase, and a gaseous phase. The main physical
effects involved at this scale are pyrolysis and drying. Di
Blasi [7] has already given a mesoscopic model of such a
vegetation medium so that we will use it and we will
disregard the microscopic description in the following.

At virgin state, the solid component of the vegetation
is made essentially of hemicellulose, cellulose, and lignin,
the liquid component is water and the gaseous com-
ponent is air. For the sake of simplicity we define the
lumped “wood” species as: hemicellulose, cellulose, and
lignin. Under heating, the vegetation dries firstly, and
then the wood pyrolysis starts. This decomposition of
wood modelling, i.e. pyrolysis modelling, was made
tractable by defining the following mesoscopic lumped
species [7]: ““char”, “flammable gases”, and “‘tar”. Char
is a carbon rich non-volatile pyrolysis residues, flam-
mable gases are low molecular weight products that are
gas phase species at room temperature, and tar is a high
molecular weight product that is a vapour at pyrolysis

temperature but condenses near room temperature.

They are secondary reactions which describe the tar

decomposition into flammable gases and char. Thus the

components of the vegetation or porous phase are:

1. the solids: wood indexed by w, char indexed by c;

2. the gases: air, (H,0),, flammable gases F or fuel, in-
dexed by Fp and vp, respectively;

3. the liquid: water (H,O), indexed by Ip.

For the sake of simplicity we neglect secondary reactions

involving tar. Moreover, we assume that oxygen does

not oxidise the wood inside the p phase (branches of

vegetation). The chemical reactions which take place in

the mesoscopic scale for the p phase are:

Water vaporisation :  (H,O), By (H,0),

. Wood ™ Fuel
Pyrolysis :

Wood s’ Char

The components of the gaseous phase, or f phase, are
(5 species numbered from 1 to 5): oxygen O,, indexed by
O, nitrogen N, indexed by N; steam (H,O), indexed by
vf (vapour in the fluid), flammable gases, i.e. fuel F in-
dexed by Ff (fuel in the fluid) and combustion residue R
indexed by Rf (residue in the fluid). There is no tar in the
gaseous phase in our study because we have neglected its
production in the vegetation. In the gaseous phase f
oxidation of the flammable gases take place:

. . . k
Oxidation reaction : vgF 4+ vo0, — JgRR

Let V. Vs Ve, and }, be the volumes occupied,
respectively, by the wood, the char, the gas and the
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Scales Different phases

Gigascopic

Macroscopic  -oiiieeriiiii..., FUSURURIr (RO
Vegetal particle
Mesoscopic
Microscopic e Sohd ...... Water A
phases eau
(Wood and coal)

Air phase

..... Vegetatlonphas GasphaSeE

Porosities
Occupation density
o] Macroscopic porosity

P Mesoscopic porosity

phase

Fig. 3. Different scales and the associated phases and porosities.

liquid phases of the p phase. Then ¥V, =V, + V,,
Ve, = Ve, + Vs and V, =V, + It are the volumes oc-
cupied, respectively, by the solid, the fluid and the total
part of the p phase. The porosity ¢ of the p phase is
defined by & = I, /V,. The saturations of solid com-
ponents of the p phase are Sa,, = pr/ V;, for the wood
and Sa., = V., /V, for the char component. Likewise the
saturations of the fluid component are Sa, =¥, /4, for
the gas and Sa,, = le/ Vi, for the liquid components.

The different scales, the different phases, the differ-
ent porosities and their relationship are summarised in
Fig. 3.

2.2. Mesoscopic system of equations for the different
phases of the vegetation stratum

The mesoscopic set of equations for the f phase and
the p phase will be described now. The mesoscopic jump
conditions between these two phases will be given too.
This set of equations is needed for the homogenisation
of Section 3.

2.2.1. Inside the gaseous phase or f phase

Equations are the equations for the mixing of perfect
gases, which are [8]:
o the balance of mass for species number i

0 /. N . :
o (pfy[f) +V- (Pr)’if"f + ]if) = it (1)
with Ziyl’f = 1, and Zi jil' = 0, 1= ()2,N27 (HQO)V,

fuel F and residue R,
e the balance of momentum

g (bve) + V- (B ovi—w) =pg—Vo, ()

e the balance of energy
0 /. 1 . 1
3 (pf (ef + Evf-)) +V (pf (ef + Evf)vf
+q; —or - Vt‘) = g vr, 3)

where g is the gravity vector and the usual thermody-
namic state equations.

2.2.2. Inside the vegetation or p phase

Di Blasi [7] has given a model of such a porous me-
dium that we are going to use, taking into account dif-
fusive transport of fluid species, water vaporisation and
gravity. We use intrinsic density description. For ex-
ample wood density p,, is defined by p, = M, /Ve,,
where M,,, is the mass of wood species inside the volume
Vi, -

pFor the solid phase, the balances of mass for the
wood and the char are

0 -

& ((1 — 8p)savawp> = —kprgp - kwpcr, (4)
and

0 . _

P ((1 —& )Sacppcp) = —keyw, (5)

with Sa,, +Sa., = 1. The k; are the internal mass
transfers from species 7 to species j and k; = —kj;. The
union of these two solid phases will be indexed by s in
the following.

For the gaseous constituents the balances of mass of
the flammable gases and the water vapour are

a P -~ .
o (SPSagpPgPYng) + V- (sPSagppgpypgpvgp + ]ng)
= 7kngWp (6)

and

a 0 ~ .
5 (sPSagpngyvgp> +V- (gPSagppgpy\,gpvgp + ngp>

= _kvgplp (7)

with yry + e, =1 and ngp +jvgp =0, and the balance
of mass of the liquid constituent is

% (s”SalP ﬁlpylp> +V- <spSa1,, ﬁlpylpvlp) = —kiyv, (8)

with Sagp +Say, = 1.

The p phase is a porous medium of small porosity &P,
so that there is no, strictly speaking, equation for the
balance of momentum, in the gaseous and liquid con-
stituents. Velocities are ruled by the Darcy law that we
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write here in a balance form which is more adequate for
the average procedure than the classical Darcy law form

V(spSagppgp> =&’Say p, 8 —fy, —fg1,,

©)
V(Sa,p, ) = @S2, 5,8 — i, — fi,
with the momentum transfers f, e and f, ool respectively,
from gas phases toward solid (wood and char) and lig-
uid phases, and f, 5, and flpgp, respectively, from liquid
phases toward solid and gas phases, giving by the con-
stitutive relations

k
Vgp = % (fgpsp + fgp]P +png(8psagp)> ’
<sPSagp> Hg,
k;
Vip =" <f1psp F g, o,V (£PSa1p)>
(enSa, ) s,

and the action reaction relation fo 1, + fie, + Kipvg Ve, +
kvgplp v, = 0. The two tensors kgp and k;, are permeability
tensors and Ve, and v, are the intrinsic mesoscopic
velocities. Seepage velocities are epSagpvgp and ¢"Say vi,.
One can define the mass densities p; , pr and p, of
the solid and fluid components and of the p phase by

By, = Swp, + Serfy
Pr, = Se, Py, + 51,91,

and

By =Py + (1),

The barycentric velocity vg, of the p phase fluid com-
ponent and the pressure pr, are defined by

P, ¥, = Sg, Py, Ve, T 51,01, V1,

and

Dty = Sg,Pg, T S1,D1,-

We have assumed in the preceding relations that the
solid constituent is at rest. We can define the dissipating
force fr,s, by fr,s, = fo s, + fis, SO that Eq. (9) leads to

V(ePpr,) = &, & — frys,- (10)

We can now write the following energy balance relation:

0 /. ~
ot (ppep> tV- (gppfnefvva +q, + gppfpvfp)

— &g, Ve, 8 =0 (11)

with mesoscopic p phase internal energy e, defined by
Ppep = & pp er, + (1 — &%) py es,.

er, and e, are the internal energies of the p phase
fluid and solid phases and q, is the p phase heat flux.
The usual thermodynamic state equations are assumed
to be valid. In particular, Pyy» Pe,» and py_are assumed to

Fig. 4. The direction for the jump across the interface.

be constants and [)gp is given by perfect gas state equa-
tion.

2.2.3. Jump conditions between the p phase and the
gaseous phase
All the mesoscopic quantities can be considered as
continuous, each one in its own phase, but there are
jump conditions across the interface between the p phase
and the gaseous phase. For a detailed derivation of such
conditions, see [9,10]. Let us denote n,, the normal to X
in the direction from p to f (Fig. 4), and wy, the velocity
of the interface.
Of course n, = —ny, and the jump conditions can be
written:
for the mass balance of the gaseous species number
l(l = F, v, 02, Nz and R)

[Spsagpﬁgpyigp (Vgp - WZ) + jigp:| ’ llp

+ [P (v = ws) +i| e =0, (12)

We suppose here that no fluid water is flowing from the
p phase.
for the balance of momentum:

—&pr, M, + [ﬁf(vf —Wz)®V+ Jf] ‘ng =0, (13)

for the balance of energy, with the appropriate no-
tations for the indices:

P 35 P P .
[6 Pr,er, Vr, +4a, + &P vr, — ppepwz] n,

+ [ﬁf (er +3vF) (ve — ws) — (q; — ot - Vf)} ng
—0. (14)

3. Averaging procedure and macroscopic vegetal phase
equations

3.1. Average procedure choice

There are several methods for deriving the equations
of an equivalent medium. One which is typically used in
porous medium theory is the method of volume aver-
aging [11,12]. We use here the one developed by Marle
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[4] because it is the more simple general method that
leads to a closed set of equations. The method can be
summarised as follows:

1. Describe the mesoscopic system of balance equations
for the bulk phases and the interface jump conditions
between these phases.

2. Use distribution theory for writing the equations, so
that interface jump conditions and bulk phase equa-
tions are not separated.

3. Take the average by convolution of the equations
with a kernel with compact support and choose
macroscopic quantity definitions. At this step, we
get more macroscopic quantities than macroscopic
balance equations.

4. Close the system of equations using a thermodynamic
second principle.

The main difference between this study and Marle’s one

is the use of extended irreversible thermodynamics in

place of irreversible thermodynamics.

3.2. Averaging procedure and definition of the macro-
scopic quantities

The quantities involved in the preceding equations
are defined only on subdomains of the vegetal phase.
Before averaging them, let us extend these functions to
all spaces of the vegetal phase, setting their values equal
to 0 outside their definition domain. These new extended
functions are denoted by superscript ~. For example, the
mass density ﬁgp of gas in the p phasg is extended to
Pg, = ﬁgp inside the p phase and to Py, = 0 outside.
These new functions have derivatives which are no
longer functions but are distributions. We consider the
following equations relating the different derivatives:

Vf = Vf + fn,ds,,

V- f=V-f+f ndy,
0~ 0 % =
&f:&f*fwzﬂ'ﬂﬁzm

where X, is the boundary of the definition domain of f
or f, wy, is the velocity of the interface, and Jy, is the
Dirac measure on ~,. We can write the system of Egs.
(1)—(11) with the extended quantities, so that Eq. (1), for
example, becomes

o/~ SN
2 (pfyif> +V. (,Df)/,-fo + ]if)

= Wy + [ﬁf;if <;t — W):,,) + jif} T (15)
Therefore the new system of equations incorporates the
boundary conditions. To proceed to the averaging of
equations we must consider a function m(x), positive

with a compact support, indefinitely derivable and such
that

/m(x)dx =1

The function

i) — { == (/e <
0 if x| /r > 1

is a good candidate. The radius r must be of the size of
the elementary representative volume, and represents the
size of the macroscopic particle. The average value
G(x,t) of a quantity g is then obtained by taking the
convolution product of g and m:

Gx.1) = (g *m)(x,7) = / £(y, ym(x — y) dy.

Whatever the smoothness of g the average value G is as
smooth as the kernel m.

Let us consider y,(x,¢) and y(x,) as the character-
istic functions for each phase. The porosity @ can be
written as

@ = y; *m. (16)
Now all Egs. (1)-(11) are written as Eq. (15) and we take

the convolution product with the kernel m, Eq. (1) gives,
for example,

0 .
5 (PPrYie) + V- (Do Y Ve + Jir) = Py — kP (17)

and the following macroscopic quantities (between
brackets) are defined:

Plpg] = prxm,

Ppe[Vi] = pvexm,

Dpe[Yi] = Ef;it' *m,

QoY Ve + [Jig] = (Ef;[t‘/‘?f + E;f) *m,

<I>{d)if] = Wy * m,

[szt} = <:Bf;if </‘7f - wa) : nzf52r> * 1.

The term K[® represents the rate of mass transfer of the
species number i from phase f to phase p. The total mass
transfer is K™ = 5. KP. Note that the macroscopic
diffusion J; is by no means the average of the meso-
scopic diffusion j,.

From the balance of momentum equation (2), we
obtain

0
o (@pVi) +V - (Do Ve @ Vi — Ft)

= &p;g — KPV; — FP. (18)

with the following definitions for macroscopic quan-
tities:
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DpVy @ Vi — (4] = </p\f/‘7f ® v — af) *m,
KPV; + [F?] = (mf(a - w&) - a) ‘05,05, % m.

For the balance of energy equation (3), we get

d 1
5 (cppf (Ef + EV?))

1
+V- (q>pf(Ef+§V§)Vf+Qf - yf.Vf)
0P 1 P;
=Ppg-Vi—P—— | Er+=V}4+— |KP — x
0¢g - Vr vy <f+2 f+pf)
(19)

with
1 ~ ([~ 1=
bp; ([Ef] +§V?) = pf(ef +§vf> *m,

1
Ppy <Ef + §V§>Vf +[Q] - Vi

~f~ 12\~ ~ ~ ~
= (pf(ef-ﬁ—zvf) Ve + qp — o¢ - Vr) *m,

1, P 0@
(Ef +5Vi +—t>1<fp + P+ (X"
Pr or
P

2
. n;f5;f> * m.

The pressure and the temperature have yet not been
defined. We define these quantities in such a way that the
macroscopic thermodynamic relations have the usual
expressions, i.e.:

~ [~ P 12\~ -~ -
Pe €f+7+§Vt- (Vf_wzf)"l‘qf_Gf'Vf

+;fwfr

for the energy:
P
Ep = HyYy ——, (20)
7 Pt
for the enthalpies:

Ty
Hy = H + / C,rdT, (21)
T

0

for the pressure:
Py = pRTy Y Yie/ Wi, (22)

In the same way, we define the macroscopic quan-
tities of the p phase. The macroscopic porosity &% is
defined by

(1-®)[6°) =2 *m.

By the procedure of averaging and convolution, Eq. (4)
gives

% ((1 — @)1 - (o‘”")SaWPpr>

= (1= ) (Kuyr, + K, (23)

with the following definitions:

macroscopic saturation of the wood

(1= @)1 - 67)[say,] = (1- ") Say, *m,
macroscopic wood mass density

(1 - ®)(1 - &)Sa,, {pwp] = (1 - E")§awpﬁwp «m,
macroscopic mass transfers

(1 = ®)Kyre,

~ NS
= (kWngp - (1 — ¢ )Sawppwpw,gw ~nzw5;w) * M,

(1 = D)Kye, = ke, * .

Whilst the mesoscopic mass transfer follows an Ar-
rhenius law such that ky,ry = A4(60,)e /%, where 0, is
the mesoscopic temperature, the macroscopic temper-
ature is not the average of the mesoscopic temperature
and therefore the macroscopic mass transfer does not
follow, a priori, such a law. As for the phase f, the
macroscopic temperature is not yet defined. Eq. (5)
gives

(-9 -6)5a,0,) = (1 -

D)Kew, s (24)
the macroscopic saturation of the char is defined by
(1= ®)(1— &")[Sa,] = (1—&")Sag, *m,

the macroscopic density

(1 - ®)(1 - &S, [p,] = (1 - E") Sa, e, * m,

and the mass transfers

(1-D)Ke,w, = (Zcpwp — (1 — Ep)gacp;%wzc '“L‘ﬁ%) * m.
In the liquid constituent, we obtain

% (1= @)67Sa,0,) + V- ((1 - 9)675a,0, V), )
= —(1 = P)Kiy, , (25)

with the saturation defined by

(1— ®)6°[Sa, ] = & Say, +m,

the mass density

(1—®)éPSa,, [plp} = EpSalpﬁlp *m,
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the velocity

~p —~ o~
(1 - ®@)&PSa,p [V,] = & Sayp, vy, *m,
the mass transfer

(1 - Q)Klv"gp

~p — —~
= (klpvgp — ¢ Salpplp(vlp - w;l) -nzl5zl) *m.

We now consider the gaseous constituent, the saturation

is defined by

(1— @)8" [Sagp] - (2”§agp) “m

its mass density Py, is defined by

(1 — ®)67Sa,, {pgp] = (Epgagp?)gp> *m,

its velocity by

(I —@)éPSay p, [Vgp} = (Epgagp;gp;gp) *1m,
the mass fractions Yig, by

(1 - ®)6"Say p, [Yigp] = <Ep§agvﬁgp;igp> *m,
and the macroscopic mass diffusion by

(1= #)67Say py Y, Vs, + [Ji, |

~p = —~ o~ o~ i
= (s Sagp,ogpy,-gpvg]D + ]igp) * 1,
so that Egs. (6) and (7) become

0
(1= @)675, p,, Ve, )

+V- <(1 — ©)6"Sa p, Yy, Vs, + Jpgp)
—(1- (D)KngWp _Klggpv

%((1 — ®)6"Say p, ngp)

+V- ((1 — @)67Sag,py Yig, Vi, + D, )
~(1 = DKy, — Ky .

The mass transfers are defined by

(1- QD)KngWp = %ngwp *m,

(1 = P)K, vely = kvgplp *m,
f_([Pe. o o
KM = ([a Sagppgvyigp(vgp —Ws,)

+ j,»gp} ~n;gp5;gﬂ) *m.

1713

The total transfer of gas from phase p to phase f is
KP' = KEQ Kpf The total mass density of phase p and
the barycentrlc Veloc1ty are defined by

pp = EPpp, + (1= 6%)pg,

(27)
P, Vi, = Sag p, Ve, + Sai,p, V),

with p; = Sa, Pg, + Sai,py. and py, = Say, py, + Sag,p, -
Darcy laws in Eq. (9) become

V((1 - @)6°Sa, Py ) — (1 — @)E%Sag p, g
f
+ Fbp Bt ngsp + ng =0, (28)
V((1 - ®)éSa R,) — (1 — P)éPSay pyg
+ F]pgp + Flpsp + Fﬁ)f =0

with the following definitions:
~p —~
(1— Py = (8 Sagppgp) * m

F * m,

D)6PSa,,

gpsp fgpsp
(1-

F,

@)é”‘pSalpPlp =

<EP§alp;1p> *m

:flg*m

pSp pSp ’

Vgplpvgp + nglp <ngplD vgp + fgplv) *m,
F' = (2"Sa, p, ny, *m
1 g gppgp 2O 2gp )
Klpvnglp + F[pgp = (k]pvgp V]p + flpgp) *xm,
pf ~p —~
= * m.
Flp (8 Salpplpnglp 5le) m

We have Flpg + ng +Kvg lpVgp + Klpvnglp =0.
Equations set (28) will provide the following equa-

tion:
V(1= 2)6°R,) = (1 - )68+ Fes,
(26a) + Fys, + F 4 B =0 (29)
with
P, =Sa, P, +Sa, B,. (30)
The energy balance Eq. (11) can be written as
(26b) 5
(1= @)p,Ey) + V- ((1 = @)py, E1, Vi, + Q)
+ V- (1= @) (Sag, Py, Ve, +Sa,R, V1, ) )
_ o(1 — @)é*Sa,, _p o(1 — @)é&%Say,
& or b o
- %Kgplp - iK.pvgp — E,K™
Py, P,
— (1= @)p; Vi, - g — X (31)
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with the following definitions:

g P~ A
5ppfp [Efp] = (3 prefp> *m,

~p,—~

(1=, [B,] = (1= eM)py e, ) +m,
ppEP = tgjppprfp + (1 - gp)pspEsp
and
(1 = ®)p; Ep, + (1 — @)EPSag Py, -V,
=+ (1 — (D)@@pSalpPlp . le =+ [Qp}
~pP~ ~ ~ — ~p /2 —~ o~ -~ o~
= (c pr, e, Ve, T4, + & (Sagppgpvgp + Sa1pp1pvlp>>
* m,
o(1 — ®)&PSa, o(1 — @)éPSa;, P
Fa o T & T p, Kuh

&

Plp pf pf
+ o Kinm K + X7
Ip

~ o~ o~ ~p = ~ o~ o~ A~
= <[pfpefpvfp +e (Sagppgpvgp + Say,p; Vi)
_EPEPWZP + ap:| . ﬂzpézp) * m.

As for phase f, the temperature is not yet defined. The
thermodynamical equations take the usual form:

for the internal energy:

ppEP =

(1= &) (Sauypy, Hoy + Sty e,

+6° (Sagp Pe, D Hig,Yig, + Sty py Hi, — pr>

(32)
for the enthalpies:
TP
Hy, = Y, + / Cpue, dT, (33)
Ty
for the pressure:
Py, = pngTp Z Yigp/Wigpv (34)
Pywys Pe, and p; = constant. (35)

Because of compatibility and jump conditions the
following relations hold:

Saw, +Sa;, =1, Sa, +Sa, =1,
ZY{{ZL ZJif:(L Yng+yvgp:17
Jeg, +dug, = 0, (36)

KP4 KPP =0, (37)

FY' 4+ FY' + FP + KV =0, (38)
P P
P 1 od
(Ef o4 |Vf|2)1<fp +P—+ X"+ E K
o 2 ot
0PEPSay, : 0PEPSay, N Py, e
gp 61‘ P at pgp gp
P
TRLY AR ) (39)
p, T

3.3. Entropy balance

The averaging method introduces new quantities,
essentially

Fluxes: Jie, Jig,s Sr, Q; and Q,,.

Sources: wr, KyyFoys Kupeps Kipvg, s F
KP, FP, Fg:, F}f and X™.

For closing the system of equations, we must relate
these quantities to usual mean mechanical variables. Let
us write the variation of the generalised entropy S in the
form

ds
pve dt

ngsp ’ Flp Sp?

gplpa

= —V'Js-FO‘S, (40)

where Jj is the entropy flux, os is the entropy production
and p,, = ®@p; + (1 — ®)p,. This entropy production
must be positive and can be written as

05 = ZJa/Ym (41)

where J, are the fluxes and X, are the forces.

In extended irreversible thermodynamics the gener-
alised entropy S of the macroscopic medium may de-
pend upon the whole set of variables. The fluxes are a
function of some of the variables defining the system and
of the forces J, = J,(X1, X5, ..., T, Tt, ..., Yy, ...). As at
equilibrium J{* = 0, up to first order one can write:

oJ,
J, = Zh: < e )equ + O(X,X,). (42)

Taking into account relation (42), the production of
entropy is positive if there is a positive matrix
M = (M) such that J, =", M,X,. The coefficients
M,, are phenomenological coefficients. To obtain the
total entropy balance we write

ds d's; d’rs,
— = Pp—— 1-o P 1-@
Pre dt Pt df +( )plp df +( )pgp
des,,
X TR

The derivative are along the motion of each phase.
These motions can indeed be considered as independent.
Moreover we suppose that the entropies depend upon
the following variables:



0. Séro-Guillaume, J. Margerit | International Journal of Heat and Mass Transfer 45 (2002) 1705-1722 1715

Sf = Sf(Ef> 1/.01"7 Yl’t} Qf)

and

Sp = Sp(Ep, I/ng7 1/,01[,7 Yigp7 pWPSaWp7 Pcpsacp:
plpsalp7 Qp:Kipf)'

So that the differential variation of entropy are

oS as d'p oS
d's = —d'E —t —d'y,
OB o(l/p) p vy
oS
+ G—Qfd Qy, (43)
P
5= gpp O dpy, 35 dp,
OE, a(1/ng) pe, O(1/py) i,
+Za dp“+2%y e
- Z S ok 1 5 arq (44)
oK pf Qp P

We can define non-equilibrium temperature and
pressure by

s _ 1
O0E; 6y

and absolute non-equilibrium pressure by

s I
o(l/p;)  ©r

In fact if the system is not far from equilibrium the
thermodynamics temperature and pressure can be equal
to the equilibrium temperature and pressure 7; and P;
[5]- We can use the same argument for the temperature
and pressure of the phase p and define:

@ _ 1 o A o u oS w
OE; Tr' o(l/p;) Ti' Y T’ 3Qy T’
s _ 1 @ h s A

0E, T, a(l/pgp) T’ a(l/plp) T,

as :76710%@

Yy, pp Ty’

oS

paﬂu
= (1 —¢gr)Fala
A(Sup,) ( )ppr

as oS a,

for a = w,c,1,
TR S

where a; and a,, are two vectors which are null when Q;
and Q,, are null so that we can set

ap = ag(Ty, py, .. .)Qr

and
aP = ap( pvpp7 . )Qp7

where a; and a, are two second-order tensors; in the
same way we can set

ais - _ bif KT
2 KIP( Tp i
We have to replace all differentials in (43) and (44) by
the appropriate expressions calculated from relations

(16)—(19) and (23)—(31). For example, Eq. (19) written
with the material derivative is

d'E
Dp; dtf —V-Q; + ;- VV; — P JK® — x™
+FP .V,

After a somewhat lengthy calculation one obtains

Js =Jg + Jsp (45)

with

Sf - g le Jlf?
Q Hjg
J, =2 — § LI
T, —~ T, &

The entropy production, which is a large expression, can
be split into several terms:

(46)

051 = va
Hig Hig
“3aev() 3o o ()
Vi o \£ 5
+ ?I ’ (F ? + va¢) + ?pp ’ (nglp + ng"P + ng
P Vlv pf
+ Py, V(1 = #)67Say)) + 2 (Fiyg, + Fi, + Y
p
+R,V((1 - @)67Sa,)), 47)
1 d'Q 1 a, d"Q,
0=Q - (v—-Z (vt
= Qf(Tfodx +Q T, T, dr
Xfp pr
- (48)
LT
Hje . (1-9)
0s = — Z waﬂ‘ —TKprgp[(Yng = Dt
(1-2)
— ;uwp * ngp‘uvgp] - Tp Klpvgp[(YVgp - l):uvgp
(1-2)
- :ulp + Yng:qup] + TKWPCP [:uwp - .ucp]7
p

(49)
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bpf depf )
e o L S Yo —1
Os4 Vgp[ T, a + T (Yor )
Hvg, Her Hrg,
- Yoo —D)+—Ye——2X
Tp( e — 1) T T T
pf p gl
+ Ko _ij % @(yﬂ. —1)
Fep 7, dt T;
- .qup

T,

Hhy Fvg
O

(50)
3.4. Closure relations

We must now write the phenomenological relations
between macroscopic fluxes and the macroscopic quan-
tities gradients. The determination in entropy produc-
tion of what a flux is and what is its associated force is
indeed a matter of choice, but the products involved in
the production of entropy must be made up of inde-
pendent variables. In fact, as expressed by Eq. (42) the
fluxes should depend upon all the forces, provided that
the force associated with a flux must be a tensor of the
same rank. For example, in order that the term
Vi /T; - (Ffp + PV ®) is positive, we can suppose then
that there is a positive second-order tensor ¢ such that

Kr i
Vi=—L (F" 4+ PV®), (51)
,Uf(DZ( )

where 4, is the macroscopic viscosity and ¢ is the per-
meability tensor.
The stress tensor has the usual form

S = — [@Pf + %me . Vf] Id + 2’7t‘L‘Df7 (52)

D; = %(VV{ +!' VV;) being the rate of strain tensor. So
that the balance of momentum for the f phase is

0
& (Do Ve) + V- (Pp Vi ®@ Vi — 01)

= ®Opig — KV + % ' Ve + BV . (53)

For analogous reasons we can consider the generalised
Fourier’s law:

d*Q
Tp ds P+ Qp =2V, + Z_:Hfgp‘]fgp + QP”

} (54)
4 o = v +3 Hdi +Q
t Q@ R e f - Jisdi frs

where Hy, (7,) and Hy(T;) are the enthalpies of species
number i. We have separated the radiant heat fluxes Q,,
and Q. 7, and ¢ are the relaxation coefficients and 4,
and A; are the conductivity coefficients. As the model
contains two temperatures, there is a heat flux inside the
particles given by

XY = (T~ 1), (55)

where y is a phenomenological coefficient.
The balance of the different chemical species during
the chemical reactions gives the following relations:

—wo,r/VoWo, = —@pe/VeWr = wre/VRWR = ¥, (56)

Y is the rate of mole production. As the reactions are of
total order vg + vo:

¥ =k(Tr)(pe¥r)" (prYo,)™ (57)

From o4 Eq. (50) we can propose the following re-
lations:

b P gpf
A V& V&p pf
11 7, T + ve,
A | By — 1y =By, S
Ty Tp B
Hpg HEg,
Ay | =— Yir — )t
+ 12{]} Ff T, FgP:|7
p Pl
ngp Fgp pf
T Fep
Mgy Hrg
= Ay | == (Y — 1) = —2 (Vg — 1
| B = 1) =2 0, - 1)
Mg Hyg
Ap | =Yy — —2 Y |- 58
+ 22{ T f T, gp:| (58a)

where the A, are phenomenological coefficients. The
right-hand side of equation set (58a) is linear in the Y;,
and Yy, so that it can be generalised to

drK?”
T
The fi(Tp, Tt, Yep, Yop, Yot - - -, Ypr) is @ phenomenological
function derived from experiments. We assume the fol-
lowing non-linear chemical kinetics:

+K,'pf :fL(Tpu Tf7 YFp7 va7 Yof7 ceey YPf)~

dp pf
Vi
7y Tgv + K = K (T, ) (Y, Yor),
dPKP (58b)
ng pf of
g KRy, = R (T, Ty) e (Ve Vi)

f f f .
and K§, = Ky, = Ky = 0; we can assume relations such
as

E (1 1
pf i
(T T = A A (R
K (T, Th) 'e"p< 212(Tp ﬂ))

i=vg,Fy. (59)

The function /(Y;, ¥;) must be determined experimentally
but we can choose (Y, Yir) = (Yo, — W) or
[(Yag,, Yur) = Yoy, f* is the function equal to f if 1" is
positive, and to 0 if f is negative, and analogously
I(Yng, YFf) = (Yng — Y]:f)+ or I(Yng7 YFf) = Yng'

The non-linear chemical kinetics can be interpreted
as new macroscopic reactions that we call volatilising
reactions:
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KPr
Fuel, 5 Fuelg

Volatilisation : o

(H,0), % (H,0),

Vp
We have defined the mass rate transfer from wood to
fuel (for example) by Ky, rg, = Ewppgp * m, where %prgp
defined by an Arrhenius law, is a function of the
mesoscopic temperature. One expects that Ky, re, should
be expressed in the same way, but as a function of the
macroscopic temperature, so that we can define

Ky, ke, = kwyrg, (Tp) (1 — 67)Say, py, - (60)
By an identical reasoning we can deduce that:
Kuye, = ke, (Tp) (1 — 67)Say, py, s (61)
Kipve, = kiyve, (T)E7Say, py, (62)
with k;; = A;;exp(—E;;/RT,).

E;; is the activation energy of the reaction i — j, R is

the ideal gas constant. Now from Eq. (47) we deduce
that there are two positive tensors x;, and Ke, such that

Vv, — L
b — op 2
t, (1 — @)&7Say,)

(Flpgp + F]psp + FF:

+ B, V((1 - ®)éSay,)), (63)
V, = Te (Fy, +F,, +F"
& T o Splp &pSp b
" g, (1— @)aPSa, )P o0 E
+ Py, V((1 — @)6Sa, ). (64)
For the mass diffusion in general the law should be
Jiw = —Li.V(1;,/T,), however usually one considers
Fick’s law:

Jit = —Pp;di VY,
(65)
J,—gp = —(1 — ¢)<§pSagppgpdingY,-gp.

The thermodynamic state laws are given by relations
(20)-(22) and (31)—(35).

3.5. Radiant heat fluxes

The derivation of a radiation model in a porous
medium is beyond the scope of this paper (see [13] for
more details on the subject), instead we consider a
simplified but appropriate model. We suppose that the
heat flux Qy, is null, because the gaseous phase is con-
sidered as a transparent medium, and the flux Q,, is
related to the spectral intensity L; by the expression

Q.. (x, t):/oOc /4 L;(x,u,t)udQd/, (66)

where 4, is the wavelength and dQ the elementary solid
angle in the direction u.

The spectral intensity is supposed to satisfy the
equation of transfer in an absorbing and emitting me-
dium:

10L;
c Ot

+V-L,=-K,L; + 1, (67)

where c¢ is the light speed. The term (1/¢)0L,;/0¢ can be
neglected, because the propagation time of light is very
small compared to characteristic time for transfer of
mass, momentum and energy. The source term I, (x,u, ?)
is given by

Ts),

Ii 3 >t = /LO T, 71 T
() = L} () + 2

X / L;(x,u,8)®;(x,u,u')dQ". (68)
4n

3.6. Discussion

This model, although complex, is probably the sim-
plest which takes into account the variety of scales and
physical phenomena. It has several interesting features.
The ’vegetal particle” (corresponding to the equivalent
medium) has two temperatures, so that the two phases
cannot be in thermal equilibrium. As in any equivalent
medium model, the size of the representative element
volume, on which the average is taken, is an important
parameter. This size can be important, if the forest
vegetation is dispersed, so that the model should take
into account the possible variation of each temperatures
T and T; inside the particles. Thus extended irreversible
process thermodynamics has been used for the closure of
the equations, to obtain generalised Fourier law allow-
ing possible thermodynamic non-equilibrium of the
particles. Moreover it is interesting to compare the
model obtained by this approach to the ones obtained
by other means such as homogenisation theory [14].
Homogenisation gives models with only one tempera-
ture and the thermal equation can be written as Eq. (16)
in [15]

2

oT L o°T
(00) S~ pic / K- de

= V- (7qVT), (69)

where K is the memory function. In many cases we can
assume that there is only one temperature. If the gen-
eralised Fourier law (54) is assumed, the corresponding
thermal equation will be of second order in time in our
modelling. But integrating by parts in Eq. (69) will
provide

or orT ,
<pc>57pfzci§: V- (/LquT)- (70)
i>1
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Indeed in the sum of Eq. (70) only a few terms
should be considered. We could have considered
higher-order time derivatives of heat flux for obtaining
a sum as Eq. (70). Therefore the results obtained by
homogenisation theory and extended irreversible ther-
modynamic are compatible. It can be seen from Eq.
(53), that if the porosity is very small, we can neglect
the right term of the balance of momentum, so that the
equation for the flow reduces to Darcy’s law. Therefore
the flow inside the vegetation can be ruled by Darcy’s
law or Brinkman law depending on the size of the
obstacles in the elementary cell compared to the size of
the cell (see [14] for a discussion). For Brinkman’s law
the Navier—Stokes equation must be supplemented by
a term M-V, linear in the velocity V, where the term
m;; of the matrix M represents the components in the
direction n° of the drag force exerted by the solid
phase, when a unit pressure gradient is exerted in the
direction n°j. For both cases (Darcy’s law or Brink-
man’s law) the matrix M or the permeability tensor
k can be calculated or experimentally determined. A
first attempt has already been made, using a fractal
modelling of vegetation, to estimate these terms (see

[16]).

4. Macroscopic equations above the forest, into the ground
and interface conditions between the forest and above it

4.1. Macroscopic equations above the forest and into the
ground

We consider here the equations above the vegetation
and into the ground. These equations are the same at
macroscopic and mesoscopic description. The gaseous
phase above the vegetation or ambient air is a mixing of
gases involved in combustion or the results of combus-
tion and steam. We can consider:

1. oxygen O,,

inert gases, mainly nitrogen N,,

steam (H,0),,

the gaseous fuel due to pyrolysis denoted by F, and
. the residues of combustion, denoted by R

The mass density of the species number i will be denoted
by p; and its molar mass by W;. The total density p is
then defined by p = Zle p;- The mass density of ith
species is Y; = p,/p.

These species combustion Kkinetics are described
through an overall, second-order reaction

o

viF 4100, 5 R (71)

@; denotes the rate of mass production of the species
number i. The balance of species gives the following
relations:

o, [voWo, = @ /veWi = W /v Wk = V), (72)

where ¥ is the rate of mass production in the oxidation
reaction (71). This reaction is of the total order vr + vo,
and then: = k(T)(pYr)" (pYo,)"™

¥ = k(T)(pYr)" (pYo,)", (73)

where T is the temperature in the ambient air. The
macroscopic equations in Q are the equations for the
mixing of perfect gases, which are [8]:

balance of mass for the species number i

2 N

5 (P7) + V- (p7V +3,) =, (74)
balance of momentum

ov. _
p(§+V~vv>—V~f_—vp+pg, (75)

balance of total energy

a*E+1WF \Y *E+1WFV+Q
o [P\ T2 P2

_?ﬂzwg (76)
with V the velocity of the centre of mass, P the pressure
and E the total internal energy. Because of the definition
of the mass density and the conservation of the total
mass we have 3 |7, =1 and 37 | J; = 0.

The stress tensor & = —PI 4+ 7 is defined by
— _ 2 _ _
V:—{P+§ﬁv-v}l+2ﬁD, (77)

where I is the identity, and D
flux is given by

5
Q=—IVT+Y HJ+
i=1

T
(T)=H, + / Cp,dT
Ty

=1(VV 4/ VV). The heat

_',O I

(78)

=

is the enthalpy of the species i and Q, is the radiative
flux vector. The diffusive fluxes J; are given by Fick’s
law

J,=-pdVY,. (79)

The state equation for the gas is that of perfect gases,
that is

%jﬁwwb (80)

The total mass enthalpy is H = ZLI Y,H;, and then the
total energy is

E=H-P/p. (81)
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The equations in the ground reduce to balance of energy
oE

p5,+V-Q (82)
with
Q=-AVI, and E=C[T+E, (83)

4.2. Interface conditions between the forest and above it

At the interfaces X, there are some macroscopic in-
terface jump conditions for the macroscopic quantities,
that must be added, to relate the equations written in Q
and Q bulk phases. Let us write i, the unit normal vector
to the interface X directed from phase Q toward phase @Q,
and [G]? = G — G; the jump of G across . From a rig-
orous point of view, these relations should be derived
from mesoscopic equations in the two bulk phases Q and
Q by a thermodynamic macroscopic description of the
interface . Volume average calculus has been done by
Ochoa-Tapia and Whitaker [10,17] for the interface be-
tween a two temperature porous medium and a
homogeneous fluid. Nevertheless, we assume local ther-
modynamic equilibrium at the interface . The temper-
ature 7y is continuous across the interface, ie. T =T
and the tangential component of the velocity can also be
considered as continuous. Then only interfacial balances
are needed. We postulate these interfacial jump condi-
tions for our porous medium with microstructure. Let us
define M™ and M; by M; = &p,;V; -nand M; = —p5,V; - ih.
Then the jump conditions are the total balance of mass

M+ M; =0, (84)
the balance of mass for the different species

MYy + MY+ [Jlb-a=0, (85)
balance of momentum

MV - [#] -0 =0, (86)

and balances of energy
: 11" -
i[E+3V] 0+ V- uni-1) 67
£
Q,-n=y(T, —Tr). (88)

The jump conditions across the interface X are sim-
ilar to the above relations with no mass transfer and no
velocity but now 7, = T. Let us write n, the unit normal
vector to the interface X directed from phase Q toward
phase Q. Then

Q¢+ ¢ Vi) m=y(T, — T7), (89)
(Q— Q) n=y(Tr - Tp). (90)

This achieves the derivation of the complete model.

5. Simplification of the previous system of equations

We describe what may be the main physical processes
involved in forest fire propagation. If there is a sufficient
heat source, the wood will firstly be dried. During this
phase, the vaporisation of the water will use a large part
of the thermal energy. Once the wood is dried the tem-
perature will increase up to a value where pyrolysis takes
place. During pyrolysis, the cellulose (and other volatile
components) will decompose into flammable gases. If
the outflow of flammable gases is sufficient, the gases
will burn and a flame will develop above and inside the
vegetal stratum. The heat released during combustion is
the heat source necessary to continue the process. In the
vicinity of the flames, the gases will move upward, due to
the conservation of mass, and a flow of fresh air,
bringing oxygen to the combustion, will occur inside and
outside the vegetation. One can appreciate the im-
portance of the permeability of the vegetal medium on
the spreading of the fire.

For analysing the energy transfer in the porous phase
we consider Egs. (19) and (31) of balance of energy. At
first approximation we can assume that the vegetation
forming this phase is at rest, and then, that the kinetic
energy is negligible. We do not consider here the possi-
bility of oscillations for the twigs and the branches. The
energy due to the mass transfer from the twigs to the
fluids domain is also negligible. The “relaxation times”
coefficients in the generalised Fourier laws Eq. (54),
which are related to the memory of the media or to the
lack of thermal equilibrium of the particles will also be
considered as small. This hypothesis is probably very
questionable because of the assumed size of particles,
but the experimental determination is a very hard task.
Moreover, we suppose that the Lewis number in the gas
is closed to unity. We neglect advection terms, pressure
and porosity variations in the porous phase. With these
assumptions in mind, the energy equations (19) and (31)
in each phase of the particle reduce to

T,

(1= @)p,Chg P+ V- (= VT, +Qp)

:RPC_X(Tf_TP)7 (91)

oTy )
@pfcﬁ(af;Jer . VTf) + V- (= A4V +Qyp)
= 2T = T) + Ree. (92)
In Eq. (92) we have neglected the dissipation 7 ;:VV;
and the variation of the porosity. The coefficients Ch and
C?, are the total specific heat given by

Py

Pg 14}
+ éap - ﬁ Z Yigp C‘P.igp + Slp — CP,lp )
Pp Pp

= (1-67)( 8,20 oy, 45,20 G,
pp P
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and Ry and R, are the chemical energy source terms.
The heat released by chemical reactions in the particle
can be written:

Rpe = —(1 = 67)(Sa, py, O, + 2,0, 0.) (93)
with

Ov, = kwyrg, (Tp) Ovwyre, + kwpe, (1) Qwiey s

0. = ke, (1,) O,

where Q, are the energy produced by the reaction
numbered o. They are the standard heat released by the
chemical « reaction at temperature 7,,. The only chemi-
cal reaction in the gaseous phase is the combustion of
flammable gases released by pyrolysis, so that

Rie = —k(Tr)(pe Yer) ™ (peYor) " O, (94)

where Q is the energy produced by the reaction of oxi-
dation. The mass balance relations in phase p reduce to

% ((1 —®)(1— gP)pWPSaWF)

= —(1—®)(1 - 6")p,, Say,ku, (Ty), (95)
%((1 — @) (1 - (g“‘P)SanpCp>

- _(1- gp)( — k(Ty)(1 - @)Sawpp%), (96)
g(u — )PSay) = —ki e (Ty)6"Sa, (97)

with ky, (7p) = kw,re, (Tp) + Kwye, (Tp)-
For obtaining the quantities Ygr and Yor, let us write
Eq. (17) for the fuel F and the oxygen O:

)
5, (PPcYee) +V - (@pYer Vi + Jrr)

= —Dve Ty + KT,

(98)
0
E(djprOf) + V- (PpYor Vi + Jor) = —Pvo oy,  (99)

where the Kggp is given by Eq. (58b).
Using Eqgs. (17), (51) and (52) the velocity V¢ satisfies
the relation

aV;
¢pf(a—t‘+ Vi - vvf)

3
+ K"V + 5 AV, (100)

2
= —®VP — v(-nfbv . Vf) — u @ Vi + Pppg

Considering the thermal equations (91) and (92), the
pyrolysis and vaporisation equations (95)-(97) and the
balance of mass for gaseous constituent equations (98)

and (99), supplemented by the heat sources due to
radiation, given by Egs. (66)-(68), the chemical reac-
tions (56) and (57), the thermodynamical relations (32)—
(35) and the balance of momentum equation (100) we
have a close model.

Vegetation can be modelled by fractals cf. [16], with a
heat exchange area which can be very large. Thus the
two phases of the vegetal particle should be near thermal
equilibrium and 7, = Ty = T at first approximation. In
this case one can consider a “one temperature model”,
where there is only one balance energy equation, instead
of Egs. (91) and (92), which can be written

. oT .
(®piCp + (1 — @)p,CP) YTR @p,CLV; - VT

+ V. ( - ;vquT + er + Qpr)
= Rc + Rpe. (101)

If we consider that the velocity of the fluid is given or
imposed, we can drop the balance of momentum equa-
tion (100) and keep only equations related to conser-
vation of mass, so that we obtain a reaction—diffusion
system. This reaction—diffusion model is similar to those
postulated by Weber [18] and by Albini [19].

6. Conclusion

The global three-dimensional model that we derived,
although complex, is probably the simplest which takes
into account the variety of scales and physical
phenomena for the combustion of the vegetation. De-
fining the vegetation as a porous medium, the equations
of the mean equivalent medium have been derived by the
method of volume averaging. Because of the possible
large size of the averaging volume the closure of equa-
tions is obtained using extended irreversible thermody-
namics. This approach provides a means of estimating
physical parameters such as heat conductivity or per-
meability, using homogenisation theory [14,20] for ex-
ample, and mesoscopic values of parameters (such
mesoscopic values are accessible by laboratory exper-
iments). The permeability tensor «; in Eq. (100) is only
dependent on the geometry of vegetation in the pore,
does not depend on the macroscopic flow and can be
calculated [16]. One feature of the model, which has not
been yet exploited is the possibility for the temperature
equations to be hyperbolic, which provides a finite speed
for the propagation of temperature. We have seen that
the equation for the balance of momentum must be
supplemented by a drag term —KV; — F, see Eq. (18),
however for very compact vegetation, the flow can be
ruled by Darcy’s law. Models closely related to the one
presented here as the one derived by Joulin [21], for
particle-laden gaseous flames, have been derived. But
they do not try to include the internal structure of the
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fuel, although the model presented here includes fine
structure of the vegetation. The coefficients 7; in equa-
tion set (58b) are relaxation times involved in the mi-
gration of gases in the wood. They are related to the
microstructure of the wood: if the permeability (or po-
rosity) of the wood tends to zero, ; must tend to infinity,
and conversely if the permeability of the wood tends to
infinity, relaxation times 7; must tend to zero. Note that
the influence of the porosity of wood may be of some
importance in the modelling of the fighting. One of the
chemical additives added to the water dropped by air-
crafts is a polyphosphate. Under the action of heat this
product is transformed into phosphoric acid which at-
tacks the surface of the vegetation and changes its po-
rosity. In order to model fire fighting where retardants
are used, one can consider that retardants affect the
activation energy of pyrolysis reactions and combustion
reactions, if the retardant action is mainly in the gaseous
phase, or by decreasing the porosity of the wood, if the
retardant action is mainly at interface between p phase
and f phase.

However a complementary work has to be done on
the modelling of radiation inside vegetation. Moreover
the equations for the ambient air (above vegetation) are
not completely satisfactory. They are considered as the
prolongation of the equations of the fluid phase inside
vegetation and then contain no consideration on a
possible solid phase. Therefore if one considers that the
soot is rather produced in the flame above the vegeta-
tion, its influence is not taken into account because no
solid phase has been considered in Egs. (71)—(83).

An analysis of the different scales involved in the
spreading of fire has been provided in this paper, but
only the microscopic to the macroscopic scales has been
considered. The numerical simulation of this “‘complete”
model is beyond the scope of this work. This calculation
should include radiation heat transfer and then the
system to be simulated is very complex. Such simulation
would provide the position, and then the propagation,
of the front flames but as the size of the fire will grow,
the size of the computation domain will increase with
time, rendering the computation almost impossible.
Therefore it is tempting to look for simplified models
tackling more specifically with the propagation. The
largest scale evoked previously was the ‘““gigascopic”
scale see Fig. 2. At this scale, the fire interacts with wind
and topography of the ground, the height of the
vegetation may appear as a small parameter. Using
some ‘“‘boundary layer”” hypothesis, one can derive two-
dimensional models. The study of the derivation of
simplified two-dimensional reaction—diffusion model, by
asymptotic analysis, is the scope of part II of this paper.
In fact seeing the type of the modelling of forest fire one
can recognise two generic approaches of modelling (in
general): a first way going from the simple to the com-
plex where “simple” models are enlarged in order to

predict as correctly as possible the needed information.
A second way going from the complex to the simple
where “complete’” models are reduced in order to obtain
the simpler of the biggest models. One could postulate
that the modelling is finished when the two approaches
provide the same type of models.
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